
IDL Version 5.4
September, 2000 Edition
Copyright © Research Systems, Inc.
All Rights Reserved

Using IDL

Restricted Rights Notice
The IDL® software program and the accompanying procedures, functions, and documenta-
tion described herein are sold under license agreement. Their use, duplication, and disclo-
sure are subject to the restrictions stated in the license agreement. Research Systems, Inc.,
reserves the right to make changes to this document at any time and without notice.

Limitation of Warranty
Research Systems, Inc. makes no warranties, either express or implied, as to any matter not
expressly set forth in the license agreement, including without limitation the condition of
the software, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages
suffered by the Licensee or any others resulting from use of the IDL software package or its
documentation.

Permission to Reproduce this Manual
If you are a licensed user of this product, Research Systems, Inc. grants you a limited, non-
transferable license to reproduce this particular document provided such copies are for your
use only and are not sold or distributed to third parties. All such copies must contain the
title page and this notice page in their entirety.

Acknowledgments
IDL® is a registered trademark of Research Systems Inc., registered in the United States Patent and Trademark Office, for
the computer program described herein. Software ≡ Vision™ is a trademark of Research Systems, Inc.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permis-
sion.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright © 1988-1998 The Board of Trustees of the University of Illinois
All rights reserved.

CDF Library
Copyright © 1999
National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1996 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.

This product contains StoneTable™, by StoneTablet Publishing. All rights to StoneTable™ and its documentation are
retained by StoneTablet Publishing, PO Box 12665, Portland OR 97212-0665. Copyright © 1992-1997 StoneTablet Publish-
ing

WASTE text engine © 1993-1996 Marco Piovanelli

Portions of this software are copyrighted by INTERSOLV, Inc., 1991-1998.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents
Chapter 1:
Overview .. 13
About IDL .. 14
Typographical Conventions ... 16
Reporting Problems ... 17

Part 1: The IDL Development Environment

Chapter 2:
Running IDL .. 23
Starting IDL ... 24
Quitting IDL ... 29
Environment Variables Used by IDL .. 30
Input to IDL ... 34
Executive Commands .. 38
Setting Up a Printer in IDL .. 40
Using IDL 3

4

Printing Graphics ... 51
Preparing and Running Programs .. 52
Issuing Operating System Commands ... 55
Batch Execution ... 56
Startup File ... 58
Non-Interactive IDL .. 59
SAVE and RESTORE ... 60
Journaling .. 61

Chapter 3:
The IDL for Windows Interface .. 63
The Main IDL Window ... 64
IDLDE Windows ... 67
The Menu Items ... 69
Keyboard Shortcuts ... 84
Customizing IDL ... 86
Windows IDL Differences ... 98

Chapter 4:
The IDL for Motif Interface ... 101
The Main IDL Window ... 103
IDLDE Windows ... 106
The Menu Items ... 107
Keyboard Shortcuts ... 121
Using Preferences to Customize IDLDE ... 123
Using Resources to Customize IDL .. 135
Command Line Options ... 137
Modifying the Control Panel ... 142
Action Routines ... 145
Modifying the Macros Menu ... 152
CDE File Manager Support ... 153

Chapter 5:
The IDL for Macintosh Interface .. 155
The Main IDL Windows .. 156
IDL Document Windows ... 159
The Menus ... 163
Contents Using IDL

5

Customizing IDL ... 175
Macintosh IDL Differences ... 186

Part 2: Reading and Writing Data

Chapter 6:
IDL Macros for Importing Data .. 191
Overview .. 192
Using Macros to Import Image Files ... 193
Using Macros to Import ASCII Files ... 197
Using Macros to Import Binary Files .. 203
Using Macros to Import HDF Files ... 210

Chapter 7:
Reading and Writing Images ... 215
List of Commands .. 216
Accessing Image Files Using Dialogs ... 219
Accessing General Image File Formats ... 223
Accessing Specific Image File Formats ... 224
Accessing Files Using Dialogs .. 226
Accessing Files With Compound Widgets .. 228

Chapter 8:
Reading and Writing ASCII Data ... 231
Overview .. 232
Reading an ASCII Data File .. 233
Advanced File Input/Output .. 237

Chapter 9:
Reading and Writing Binary Data .. 239
Overview .. 240
Reading a Binary Data File .. 241
Advanced File Input/Output .. 245

Part 3: Using Direct Graphics

Chapter 10:
Graphics .. 249
Overview .. 250
IDL Direct Graphics .. 251
Using IDL Contents

6

IDL Object Graphics .. 252

Chapter 11:
Direct Graphics Plotting ... 253
Overview .. 254
Plotting Keyword Parameters .. 255
Direct Graphics Coordinate Systems ... 256
Annotation – The XYOUTS Procedure ... 265
Plotting Symbols .. 267
Polygon Filling .. 271
Tick Marks ... 275
Logarithmic Scaling ... 278
Multiple Plots on a Page .. 280
Specifying the Location of the Plot ... 282
Plotting Missing Data .. 284
Date/Time Plotting ... 285
Using the AXIS Procedure .. 296
Using the CURSOR Procedure .. 300

Chapter 12:
Plotting Multi-Dimensional Arrays .. 303
Overview .. 304
Contour Plots ... 305
Overlaying Images and Contour Plots ... 312
Additional Contour Options .. 316
The SURFACE Procedure ... 320
Three-Dimensional Graphics ... 323
Three-Dimensional Transformations ... 333
Shaded Surfaces ... 339
Volume Visualization .. 342
References .. 346

Chapter 13:
Map Projections .. 347
Overview .. 348
The MAP_SET Procedure ... 349
The MAP_GRID Procedure .. 351
Contents Using IDL

7

The MAP_CONTINENTS Procedure ... 352
Graphics Techniques for Mapping ... 353
Map Projections Described .. 355
Azimuthal Projections .. 356
Cylindrical Projections ... 366
Pseudocylindrical Projections .. 371
Putting Data on Maps ... 374
High-Resolution Continent Outlines ... 376
References .. 378

Chapter 14:
Image Display Routines ... 379
Overview .. 380
Images .. 381
Imaging Routines ... 382
Image Display .. 383
Reading from the Display Device .. 387
Color Tables ... 389
TrueColor Displays .. 396
Controlling the Device Cursor ... 400
References .. 401

Chapter 15:
Signal Processing ... 403
Overview .. 404
Digital Signals .. 405
Signal Analysis Transforms ... 408
The Fourier Transform ... 409
Interpreting FFT Results .. 410
Displaying FFT Results ... 411
Using Windows .. 416
Aliasing .. 420
FFT Algorithm Details ... 421
The Hilbert Transform ... 422
The Wavelet Transform ... 424
Convolution ... 425
Correlation and Covariance ... 426
Using IDL Contents

8

Digital Filtering ... 427
Finite Impulse Response (FIR) Filters ... 428
FIR Filter Implementation ... 432
Infinite Impulse Response Filters .. 434
Routines for Signal Processing .. 438
References .. 439

Chapter 16:
Mathematics .. 441
IDL’s Numerical Recipes Functions ... 443
Accuracy & Floating-Point Operations ... 444
Arrays and Matrices ... 446
Correlation Analysis .. 450
Curve and Surface Fitting .. 454
Eigenvalues and Eigenvectors ... 457
Gridding and Interpolation .. 463
Hypothesis Testing .. 465
Integration .. 468
Linear Systems ... 473
Nonlinear Equations .. 480
Optimization .. 482
Sparse Arrays ... 484
Time-Series Analysis ... 487
Multivariate Analysis ... 490
References .. 496

Part 4: Object Graphics

Chapter 17:
Object Graphics .. 501
Overview .. 502
Direct versus Object Graphics ... 504
How to Use Object Graphics ... 506
Overview of Object Graphics Classes ... 508
Container Objects .. 510
Structure Objects ... 511
Atomic Graphic Objects .. 512
Contents Using IDL

9

Composite Objects ... 514
Attribute Objects .. 515
Helper Objects ... 516
Destination Objects .. 517
File Format Objects .. 518
Properties of Objects .. 519
Undocumented Graphic Object Classes ... 521

Chapter 18:
The Graphics Object Hierarchy ... 523
Overview .. 524
Scenes .. 525
Viewgroups .. 526
Views ... 527
Models .. 528
Atomic Graphic Objects .. 529
Attribute and Helper Objects ... 530
The Rendering Process .. 531
Simple Plot Example ... 533

Chapter 19:
Transformations .. 535
Overview .. 536
Viewport .. 537
Projection ... 539
Eye Position ... 541
View Volume ... 543
Model Transformations .. 546
Coordinate Conversion .. 549
A Simple Example ... 552
Virtual Trackball and 3D Transformations .. 555

Chapter 20:
Working with Color ... 557
Overview .. 558
Color and Digital Data ... 559
Indexed Color Model ... 560
Using IDL Contents

10
RGB Color Model .. 561
Color and Destination Objects ... 562
Palettes ... 563
Using Color .. 564
How IDL Interprets Color Values ... 566

Chapter 21:
Using Attributes and Helpers .. 569
Overview .. 570
Font Objects ... 571
Palette Objects ... 574
Pattern Objects ... 575
Symbol Objects .. 577
Tessellator Objects ... 581

Chapter 22:
Working with Axes and Text .. 583
Overview .. 584
Axis Objects ... 585
Text Objects ... 603

Chapter 23:
Working with Plots and Graphs ... 607
Contour Objects ... 608
Polygon Objects ... 610
Polyline Objects ... 615
Plot Objects .. 616
Legend Objects .. 620
A Plotting Routine ... 623

Chapter 24:
Working with Surfaces ... 627
Surface Objects .. 628
Light Objects ... 633
An Interactive Surface Example .. 636
Contents Using IDL

11
Chapter 25:
Working with Images .. 639
Image Objects .. 640
Colorbar Objects .. 644
Saving an Image to a File ... 646

Chapter 26:
Working with Volumes .. 649
Volume Objects ... 650
Volume Object Attributes .. 652

Chapter 27:
Selecting Objects .. 657
Selection and Data Picking .. 658
Selection ... 659
A Selection Example .. 661
Data Picking ... 662
A Data Picking Example .. 663

Chapter 28:
Using Destination Objects ... 665
Overview .. 666
Window Objects ... 667
Using Window Objects .. 670
Instancing ... 672
Buffer Objects .. 674
Clipboard Objects .. 675
Printer Objects ... 676
VRML Objects ... 679

Chapter 29:
Subclassing from Object Graphics ... 681
Creating Composite Classes or Subclasses .. 682

Chapter 30:
Performance Tuning Object Graphics ... 685
Overview .. 686
Polygon Mesh Optimization .. 687
Using IDL Contents

12
Normal Computations .. 690
Retained Graphics and Expose Events .. 691
Improving Redraw Performance .. 692
Back-face Culling .. 693
Lighting .. 694

Index ... 695
Contents Using IDL

Chapter 1:

Overview
This chapter includes information about IDL, the IDL documentation set, and how to contact
Research Systems Technical Support. The following topics are covered in this chapter:
About IDL . 14
Typographical Conventions 16

Reporting Problems 17
Using IDL 13

14 Chapter 1: Overview
About IDL

IDL is a complete computing environment for the interactive analysis and
visualization of data. IDL integrates a powerful, array-oriented language with
numerous mathematical analysis and graphical display techniques. Programming in
IDL is a time-saving alternative to programming in FORTRAN or C—using IDL,
tasks which require days or weeks of programming with traditional languages can be
accomplished in hours. You can explore data interactively using IDL commands and
then create complete applications by writing IDL programs.

Advantages of IDL include:

• IDL is a complete, structured language that can be used both interactively and
to create sophisticated functions, procedures, and applications.

• Operators and functions work on entire arrays (without using loops),
simplifying interactive analysis and reducing programming time.

• Immediate compilation and execution of IDL commands provides instant
feedback and hands-on interaction.

• Rapid 2D plotting, multi-dimensional plotting, volume visualization, image
display, and animation allow you to observe the results of your computations
immediately.

• Support for OpenGL-based hardware accelerated graphics.

• Many numerical and statistical analysis routines—including Numerical
Recipes routines—are provided for analysis and simulation of data.

• IDL’s flexible input/output facilities allow you to read any type of custom data
format. Support is provided for

• common image standards: BMP, GEO TIFF, Interfile, JPEG, PICT, PNG,
PPM, SRF, TIFF, X11 Bitmap, and XWD.

• scientific data formats: CDF, HDF, and NetCDF.

• other data formats: ASCII, Binary, DICOM, DXF, WAV, and XDR.

• IDL widgets can be used to quickly create multi-platform graphical user
interfaces to your IDL programs.

• IDL programs run the same across all supported platforms (UNIX, VMS,
Microsoft Windows, and Macintosh systems) with little or no modification.
About IDL Using IDL

Chapter 1: Overview 15
This application portability allows you to easily support a variety of
computers.

• Existing FORTRAN and C routines can be dynamically-linked into IDL to add
specialized functionality. Alternatively, C and FORTRAN programs can call
IDL routines as a subroutine library or display engine.
Using IDL About IDL

16 Chapter 1: Overview
Typographical Conventions

The following typographical conventions are used throughout the IDL documentation
set:

• UPPER CASE type
IDL functions and procedures, and their keywords are displayed in UPPER
CASE type. For example, the calling sequence for an IDL procedure looks like
this:

CONTOUR, Z [, X, Y]

• Mixed Case type
IDL object class and method names are displayed in Mixed Case type. For
example, the calling sequence to create an object and call a method looks like
this:

object = OBJ_NEW('IDLgrPlot')
object -> GetProperty, ALL=properties

• Italic type
Arguments to IDL procedures and functions — data or variables you must
provide — are displayed in italic type. In the above example, Z, X, and Y are all
arguments.

• Square brackets ([])
Square brackets used in calling sequences indicate that the enclosed arguments
are optional. Do not type the brackets. In the above CONTOUR example, X
and Y are optional arguments. Square brackets are also used to specify array
elements.

• Courier type
In examples or program listings, things that you must enter at the command
line or in a file are displayed in courier type. Results or data that IDL displays
on your computer screen are shown in courier bold type. An example might
direct you to enter the following at the IDL command prompt:

array = INDGEN(5)
PRINT, array

In this case, the results are shown like this:

 0 1 2 3 4
Typographical Conventions Using IDL

Chapter 1: Overview 17
Reporting Problems

We strive to make IDL as reliable and bug free as possible. However, no program
with the size and complexity of IDL is perfect, and bugs do surface. When you
encounter a problem with IDL, the manner in which you report it has a large bearing
on how well and quickly we can fix it.

Bugs which are reported and verified in one release are corrected as soon as possible.
The relnotes.txt file accompanying each release includes information about new
features in that release, bug fixes, and known problems which may be of help.

This section is intended to help you report problems in a way which helps us to
address the problem rapidly.

Background Information

Sometimes, a bug only occurs when running on a certain machine, operating system,
or graphics device. For these reasons, we need to know the following facts when you
report a bug:

• Your IDL installation number.

• The version of IDL you are running.

• The type of machine it is running on.

• The operating system version it is running under.

• The type and version of your windowing system.

• The graphics device, if the problem involves graphics.

The installation number is assigned by us when you purchase IDL. The IDL version,
site number, and type of machine are printed in the output window when IDL is
started.

Under UNIX, the version of the operating system can usually be found in the file
/etc/motd. It is also printed when the machine boots. In any event, your system
administrator should know this information.

Under VMS, the DCL statement:

write sys$output f$getsyi("version")

will give you the operating system version.

Under Windows, select About from the Help menu in the Windows Explorer.
Using IDL Reporting Problems

18 Chapter 1: Overview
On the Macintosh, select About this Macintosh from the apple menu.

Double Check

Before reporting a problem, you should always ask yourself, “Is it really a bug?”
Sometimes, it is a simple matter of misinterpreting what is supposed to happen.
Double check with the manual or a local expert.

If you cannot determine what should happen in a given situation by consulting the
reference manual, the manual needs to be improved on that topic. Please let us know
if you feel that the manual was vague or unclear on a subject.

It is often obvious whether something is a bug or not. If IDL crashes, it is a genuine
bug. If however, it draws a plot differently than you would expect or desire, it might
be a bug, but it is certainly less obvious. Another question to ask is whether the
problem lies within IDL, or with the system running IDL. Is your system properly
configured with enough virtual memory and sufficient operating system quotas?
Does the system seem stable and is everything else working normally?

Describing The Problem

When describing the problem, it is important to use precise language. Terms like
crashes, blows up, and fails are vague and open to interpretation. Does it really crash
IDL and leave you looking at an operating system prompt? This is how RSI
Technical Support personnel interpret a problem report of a crash. If the behavior
being reported refers to an unexpected error message being issued before returning
another prompt, then describing it as a crash becomes misleading. What is really
meant by a term like “fails?”

It is also important to separate concrete facts from conjecture about underlying
causes. For example, a statement such as “IDL dumps core when allocating dynamic
memory” is not nearly as useful as this statement, “IDL dumps core when I execute
the following statements. I think it might be trying to get dynamic memory.” The
second version tells us exactly what happened. The opinion about what was going on
when the problem surfaced is also useful to us, but it helps to have it clearly labeled
as such.

Reproducibility

Intermittent bugs are by far the hardest kind to fix. In general, if we can’t make it
happen on our machine, we can’t fix it. It is therefore far more likely that we can help
you if you can tell us a sequence of IDL statements that cause the problem to happen.
Naturally, there are degrees of reproducibility. Situations where a certain sequence of
statements causes the bug 1 time in 3 tries are fairly likely to be fixable. Situations
Reporting Problems Using IDL

Chapter 1: Overview 19
where the bug happens once every few months and no one is sure what triggered it
are nearly impossible to identify and correct.

Simplify the Problem

When reporting a bug, it is important to give us the shortest possible series of IDL
statements that cause it. The longer and more intricate an example, the less likely it is
that we can help. Sometimes a single statement triggers the bug. Often though, the
problem surfaces when writing a larger system of inter-related procedures and
functions. Such a situation must be simplified before we can tackle it. Take the
following steps to simplify your problem:

• Copy the procedure and function files that are involved to a scratch second
copy. Never modify your only copy!

• Eliminate everything not involved in demonstrating the bug. Don’t do this all
at once. Instead, do it in a series of slow careful steps. Between each step, stop
and run IDL on the result to ensure that the bug still appears.

• If a simplification causes the bug to disappear, slowly restore the statements
involved until you can identify the source of the problem.

• If the problem does not involve file Input/Output, strive to eliminate all file I/O
statements. Use IDL routines to generate a dummy data set, rather than
including your own data. If your bug report does not involve I/O, it will be
much easier for us to reproduce. If you have to provide us with a copy of your
data, things become more complicated.

On the other hand, if the bug involves file Input/Output, attempt to determine if the
problem only happens with a certain file, or with any data. If you are running under
VMS, check the file organization using the DCL DIRECTORY/FULL command,
and include this information in your report.

If it is necessary to send us your data there are two preferred methods. First, if it is a
small data set please send it as an attachment in your e-mail to us at
support@rsinc.com. Second, if it is a large data set please place it on our FTP site at
ftp.rsinc.com/incoming. Then send us the commands that reproduce your problem
along with the name of the data set that you placed on our FTP site.

The end result of such simplification should be a small number of IDL statements
that demonstrate the problem.
Using IDL Reporting Problems

20 Chapter 1: Overview
Problems with Dynamic Loading

Under some operating systems, the CALL_EXTERNAL and LINKIMAGE system
routines allow you to dynamically load routines written in other languages into IDL.
This is a very powerful technique for extending IDL, but it is considerably more
difficult than simply writing IDL statements. At this level, the programmer is
underneath the user level shell of IDL and is not protected from small programming
errors that can corrupt data, give incorrect results, or even crash IDL. In such
situations, the burden of proving that a bug is within IDL and not the dynamically
loaded code is entirely the programmer’s.

Although it is certainly true that a bug in this situation can be within IDL, it is very
important that you exhaust all other possibilities before reporting a bug. If you decide
that you need to report a bug, the comments above on simplifying things are even
more important than usual. If you send us a small example that shows the bug, we can
respond quickly with a correction or advice. Otherwise, we may not even know
where to begin.

Sending Data with Your Bug Report

If the statements required to reproduce the bug are more than a few lines or require
data files, we will need you to send them to us on magnetic media or via e-mail. Call
us for details.

Contact Us

To report a problem, contact us at the following addresses.

Mail

Research Systems, Inc.
4990 Pearl East Circle
Boulder, CO 80301

Telephone

(303) 786-9900
(303) 786-9909 (Fax)
(303) 413-3920 (IDL Technical Support direct line)

Electronic Mail

support@ResearchSystems.com
Reporting Problems Using IDL

mailto:support@ResearchSystems.com

Part I: The IDL
Development
Environment

Chapter 2:

Running IDL
The following topics are covered in this chapter:
Starting IDL . 24
Quitting IDL . 29
Environment Variables Used by IDL 30
Input to IDL . 34
Executive Commands 38
Setting Up a Printer in IDL 40
Printing Graphics . 51

Preparing and Running Programs 52
Issuing Operating System Commands 55
Batch Execution . 56
Startup File . 58
Non-Interactive IDL 59
SAVE and RESTORE 60
Journaling . 61
Using IDL 23

24 Chapter 2: Running IDL
Starting IDL

To run IDL under UNIX or VMS in command-line mode, enter idl at the operating
system prompt. To run the IDL Development Environment graphical user interface,
enter idlde at the UNIX prompt, or idl/de at the VMS prompt. To run IDL under
Windows or the Macintosh OS, double-click on the IDL icon. For a description of the
IDL graphical user interface, see Chapter 4, “The IDL for Motif Interface”, Chapter
3, “The IDL for Windows Interface”, or Chapter 5, “The IDL for Macintosh
Interface”.

Note
To start the IDLDE by double-clicking on a .pro file in the CDE File Manager on
HP-UX, Solaris, or Tru64 UNIX, you must ensure that the IDLDE is setup to
support the CDE File Manager. See “CDE File Manager Support” on page 153.

When IDL is ready to accept a command, it displays the IDL> prompt. If IDL does
not start, take the following action depending upon the operating system you are
running:

• UNIX: Be sure that your PATH environment variable includes the directory
that contains IDL. You can find other recommended settings for environment
variables at the end of this chapter.

• VMS: See your system manager (or the IDL installation instructions) for the
proper commands to include in your LOGIN.COM file.

• Windows: Be sure that the path listed in the Properties dialog for the IDL icon
(this is found under the File menu in the Program Manager in Windows NT
3.51, or by right-clicking on the IDL shortcut icon in Windows 95 and
Windows NT 4.0) accurately reflects the location of the IDL executable file
idlde.exe.

Importing IDL Preferences from Previous Releases

The first time you start IDL for Windows after installing, you will be prompted for
whether or not you want to import preferences or user-defined macros from a
previous release of IDL.
Starting IDL Using IDL

Chapter 2: Running IDL 25
Note
IDL will import preferences from IDL 5.1 or later versions.

Note
It is not necessary to explicitly import macros from previous releases of IDL on
UNIX, VMS, or Macintosh platforms. IDL preferences and macros are
automatically imported on these platforms.

If you do not want to import preferences and user-defined macros, select No and IDL
will start. If you want to import from a previous release, select Yes. The new Import
IDL Preferences dialog displays.

This dialog displays the paths to the previous IDL installations on your machine in
the drop-down list box. Select the path to the previous release of IDL from which to
import preferences and user-defined macros. If you want to import any user-defined
macros from this installation as well, select the Import Macros check box. Click
OK. The preferences and user-defined macros are imported and then IDL will start.

Figure 2-1: Importing IDL Preferences from Previous Releases

Figure 2-2: Import IDL Preferences Dialog
Using IDL Starting IDL

26 Chapter 2: Running IDL
Note
If you chose not to import user-defined macros or if you want to import macros
from several previous installations, you can select Macros→Import, and select the
previous release from which to import the macros.

Startup Switches Accepted by IDL

You can alter some IDL behaviors by supplying command line switches along with
the IDL command. Different switches are available on different platforms. IDL can
also be started in non-interactive mode by specifying the name of a batch file at
startup time. See “Non-Interactive IDL” on page 59 for details.

UNIX

• The UNIX version of IDL accepts the following command line switches:

-rt=file

Start IDL with a runtime license. The file argument should be an IDL .sav file.
If no file is specified, IDL attempts to run a file named runtime.sav. If you are
interested in developing IDL runtime applications, please contact your
Research Systems sales representative.

-queue

For users of counted floating licenses, setting this command switch causes IDL
to wait for an available license before beginning an IDL task such as batch
processing.

-w

Start IDL with the graphical user interface. This is the same as entering idlde at
the command prompt.

-autow

Start IDL with the graphical user interface if possible, otherwise start IDL in
command-line mode.

-32

Start IDL in 32-bit mode, otherwise IDL starts in 64-bit mode by default for
those platforms that support 64-bit. If you have not installed the 64-bit version,
the 32-bit version will automatically be started. If you have not installed the
32-bit version, this flag will not work.
Starting IDL Using IDL

Chapter 2: Running IDL 27
-nw

Run IDL in command-line mode no matter what. Note that specifying idlde -
nw at the command line will start IDL in command line mode.

See Chapter 4, “The IDL for Motif Interface” for additional command line
options for the graphical user interface.

VMS

• The VMS version of IDL accepts the following command line qualifiers:

/RUNTIME=file

Start IDL with a runtime license. The file argument should be an IDL .sav file.
If no file is specified, IDL attempts to run a file named runtime.sav. If you are
interested in developing IDL runtime applications, please contact your
Research Systems sales representative.

/QUEUE

For users of counted floating licenses, setting this startup command switch
causes IDL to wait for an available license before beginning an IDL task such
as batch processing.

/DE

Start IDL with the graphical user interface.

/[NO]WINDOW

Start IDL with the graphical user interface (same as /DE). If the NO prefix is
included, IDL starts in command-line mode.

/[NO]AUTOWINDOW

Start IDL with the graphical user interface if possible, otherwise start IDL in
command-line mode. If the NO prefix is included, IDL starts in command-line
mode.

/ARRAY_MEMORY

Adjust the amount of memory allocated for IDL arrays. See
“IDL_ARRAY_MEMORY_SIZE” on page 32 for a more detailed description.

See Chapter 4, “The IDL for Motif Interface” for additional command line
options for the graphical user interface.

Windows

• The Windows version of IDL accepts the following command line switch:
Using IDL Starting IDL

28 Chapter 2: Running IDL
-queue

For users of counted floating licenses, setting this command switch causes IDL
to wait for an available license before beginning an IDL task such as batch
processing. To set this switch, change the shortcut properties of the IDL 5.4
desktop icon so that the target line reads:

C:\RSI-Directory\bin\bin.x86\idlde.exe -queue

where RSI-Directory is the directory where you have installed IDL.

Macintosh

• The Macintosh version of IDL does not accept command-line switches.
Starting IDL Using IDL

Chapter 2: Running IDL 29
Quitting IDL

To quit IDL, do one of the following:

• Enter the EXIT command at the IDL command prompt.

• If you are running the IDL Development Environment (IDLDE), you can exit
by selecting the Exit option from the File menu.

• Type Alt+F4 (Windows) or Command+Q (Macintosh)

Quitting Command-Line Mode (UNIX and VMS)

UNIX: Under UNIX, entering Ctrl+D as the first character in command-line mode
causes IDL to exit back to the operating system. The EXIT procedure has the same
function. If Ctrl+D is not the first character, it simply ends the input line as if a return
had been entered. Note that you can normally use Ctrl+Z to suspend IDL and return
you to the shell process without exiting IDL. After completing any shell commands,
type fg to return IDL to the foreground. Although the UNIX suspend character can be
changed by the user outside of IDL, this is rarely done. For the purposes of this
manual, we assume the default convention.

VMS: Under VMS, entering Ctrl+Z as the first character in command-line mode
causes IDL to exit back to the operating system. The EXIT procedure has the same
function. If Ctrl+Z is not the first character, it ends the input line as if a return had
been entered. This input line is executed, then IDL exits.
Using IDL Quitting IDL

30 Chapter 2: Running IDL
Environment Variables Used by IDL

When IDL starts, it checks the values of certain environment variables (called logical
names under VMS) and/or preference settings specified in the Preferences dialog of
the IDLDE. Whether IDL uses the environment variable or Preferences setting
depends on the platform:

• On Motif, the environment variable supersedes the value specified in the
Preferences dialog. The Preferences value is used only if no environment
variable is specified.

• On Windows and Macintosh platforms, any startup value that can be specified
via the Preferences dialog supersedes the corresponding environment variable.
Therefore, setting environment variables that correspond to startup values that
can be specified in the Preferences dialog has no effect.

The aspects of IDL’s behavior that are controlled by environment variables can also
be controlled by setting IDL system variables in a startup script.

Environment Variables — All Platforms

IDL_DEVICE

Set this environment variable equal to the name of the default IDL graphics device.
Setting this value is the same as setting the value of the IDL system variable
!D.NAME. Note that the concept of a graphics device applies only to IDL Direct
Graphics; IDL Object Graphics do not use the current graphics device.

IDL_DIR

Set this environment variable equal to the path to the main IDL directory. Setting this
value is the same as setting the value of the IDL system variable !DIR.

IDL_DLM_PATH

Set this environment variable equal to the path to the directory or directories
containing IDL dynamically loadable modules. The corresponding IDL system
variable is !DLM_PATH. Due to the nature of DLMs, the value of !DLM_PATH
cannot be changed. See “!DLM_PATH” in Appendix D of the IDL Reference Guide.
For information on expanding IDL_DLM_PATH, see “Path Expansion” on page 33.
Environment Variables Used by IDL Using IDL

Chapter 2: Running IDL 31
Note
On Windows, using the IDL_DLM_PATH environment variable is the only way to
specify the path to DLMs.

IDL_HELP_PATH

Set this environment variable equal to the path to the directory or directories
containing IDL help files. Setting this value is the same as setting the value of the
IDL system variable !HELP_PATH. For information on expanding
IDL_HELP_PATH, see “Path Expansion” on page 33.

IDL_PATH

Set this environment variable equal to the path to the directory or directories
containing IDL library (.pro and .sav) files. Setting this value is the same as setting the
value of the IDL system variable !PATH. For information on expanding IDL_PATH,
see “Path Expansion” on page 33.

IDL_STARTUP

Set this environment variable equal to the path to an IDL batch file that contains a
series of IDL statements which are executed each time IDL is run. See “Startup File”
on page 58 for further details.

IDL_TMPDIR

IDL, and code written in the IDL language, sometimes need to create temporary files.
The location where these files should be created is highly system-dependent, and
local user conventions are often different from standard practice. By default, IDL
selects a reasonable location based on operating system and vendor conventions. Set
the IDL_TMPDIR environment variable to override this choice and explicitly specify
the location for temporary files.

The GETENV system function handles IDL_TMPDIR as a special case, and can be
used by code written in IDL to obtain the temporary file location. See GETENV in
the IDL Reference Guide for more information.

Environment Variables — UNIX

The following environment variables are used by IDL for UNIX.

DISPLAY

IDL uses the DISPLAY environment variable to choose which X display is used to
display graphics.
Using IDL Environment Variables Used by IDL

32 Chapter 2: Running IDL
TERM

As with any X Windows program, IDL uses the standard UNIX environment variable
TERM to determine the type of terminal in use when IDL is in command-line mode.

LM_LICENSE_FILE

IDL’s FlexLM-based license manager uses the value of this environment variable to
determine where to search for valid license files. Consult the license manager
documentation for details.

Logical Names — VMS

The following logical name is used by IDL only for VMS.

IDL_ARRAY_MEMORY_SIZE

You can control both the initial size of the memory block allocated to hold IDL
arrays and the amount of memory allocated when the array memory block must be
extended dynamically. You can control the memory allocation in two ways:

1. If a logical named IDL_ARRAY_MEMORY_SIZE exists when IDL starts,
IDL uses its value to determine the initial and extend sizes. If the logical
contains a single number, it is taken as the extend size. Two numbers separated
by whitespace are taken as the extend and initial sizes, in that order. For
example, to set the extend size to 1024 pages, you could put the following line
into your LOGIN.COM file:

$ DEFINE IDL_ARRAY_MEMORY_SIZE 1024

To also make the initial size be 2048 pages:

$ DEFINE IDL_ARRAY_MEMORY_SIZE "1024 2048"

2. Use the ARRAY_MEMORY qualifier to specify these same values at startup
time. As above, to set the extend size to 1024 pages:

$ IDL/ARRAY_MEMORY=(EXTEND=1024)

To set the initial size to 2048 as well:

$ IDL/ARRAY_MEMORY=(INITIAL=2048, EXTEND=1024)

The choice of qualifier or logical depends on the application. Values specified via the
ARRAY_MEMORY qualifier take precedence over those specified by the logical
name. Neither are required; IDL will provide defaults. The ability to set these values
is provided for those with a deep understanding of VMS memory management and
special requirements that the defaults don’t satisfy.
Environment Variables Used by IDL Using IDL

Chapter 2: Running IDL 33
Path Expansion

The IDL_PATH, IDL_DLM_PATH, and IDL_HELP_PATH environment variables
support two special notations that cause IDL to expand the variables when they are
translated at startup time. These notations simplify the setting of these variables:

• Using “+” — When IDL translates the IDL_PATH, IDL_DLM_PATH, or
IDL_HELP_PATH environment variables, it looks for a leading + on each
directory, and if it is present, IDL searches the directory and all of its
subdirectories for files of the appropriate type for the path. Any directory
containing such files is added to the path. For more information, see
EXPAND_PATH in the IDL Reference Guide.

• Using “<IDL_DEFAULT>” — When IDL gets the value of the IDL_PATH,
IDL_DLM_PATH, and IDL_HELP_PATH environment variables, it replaces
any instances of the string <IDL_DEFAULT> with the default value IDL would
have assumed for the environment variable if it were not defined. Hence, to
pre-pend your directory to IDL’s default location in !DLM_PATH (under
UNIX):

% setenv IDL_DLM_PATH "/your/path/here:<IDL_DEFAULT>"

To append it to the end:

% setenv IDL_DLM_PATH "<IDL_DEFAULT>:/your/path/here"

This substitution allows you to set up your paths without having to hard-code
IDL’s defaults into your startup scripts.
Using IDL Environment Variables Used by IDL

34 Chapter 2: Running IDL
Input to IDL

Commands that are entered at the IDL prompt are usually interpreted as IDL
statements to be executed. Other interpretations include executive commands that
control execution and compilation of programs, shell commands, etc. Input to the
IDL prompt is interpreted according to the first character of the line, as shown in the
following table.

Command Recall and Line Editing

IDL saves the last 10 command lines entered. These command lines can be recalled,
edited, and re-entered. The up-arrow key (↑) on the keypad recalls the previous
command you entered to IDL. Pressing it again recalls the previous line, and so on.
When a command is recalled, it is displayed at the IDL prompt and can be edited
and/or entered.

Note
You can change the number of lines to be recalled in the IDLDE Preferences. Select
File → Preferences... and adjust the number under the General option.

First Character Action

. Executive command

? Help inquiry

$ Command to be sent to operating system (UNIX,
VMS, Windows)

@ Batch file initiation.

Up arrow key Recall/edit previous command

Ctrl+D Under UNIX, exits IDL, closes all files, and returns
to operating system.

Ctrl+Z Under UNIX, suspends IDL. Under VMS and
Windows, exits IDL, closes all files, and returns to
operating system.

All others IDL statement

Table 2-1: Interpretation of the First Character in an IDL Command
Input to IDL Using IDL

Chapter 2: Running IDL 35
The line-editing abilities and the keys that activate them differ somewhat between the
different operating systems. The table below lists the edit functions and the
corresponding keys.

Function UNIX VMS Windows Macintosh

Move cursor to
start of line

Ctrl+A Home Ctrl+A,
Home

Move cursor to end
of line

Ctrl+E Ctrl+E,
Ctrl+W

End Ctrl+E, End

Move cursor left
one character

Left arrow Ctrl+D,
Left arrow

Left arrow Left arrow

Move cursor right
one character

Right arrow Ctrl+F,
Right arrow

Right arrow Right arrow

Move cursor left
one word

Ctrl+B, (R13
on Sun
Keyboard)

Ctrl+left
arrow

Ctrl+B

Move cursor right
one word

Ctrl+F, (R15
on Sun
Keyboard)

Ctrl+right
arrow

Ctrl+F

Delete from current
to start of line

Ctrl+U Ctrl+U,
Ctrl+X,
Ctrl+Delete

Delete from current
to end of line

Ctrl+Delete

Delete entire line Ctrl+U

Delete current
character

Ctrl+X Delete Ctrl+X,
Right-Delete

Delete previous
character

Ctrl+H, or
Backspace,
or Delete

Backspace,
or Delete

Backspace Ctrl+H, or
Delete

Delete previous
word

Ctrl+W, or
ESC-
Delete

Ctrl+W

Table 2-2: Command Recall and Line Editing Keys
Using IDL Input to IDL

36 Chapter 2: Running IDL
The command recall feature is enabled by setting the system variable !EDIT_INPUT
to a non-zero value (the default is 1) and is disabled by setting it to 0. See
“!EDIT_INPUT” in Appendix D of the IDL Reference Guide for details.

Changing the Number of Lines Saved

You can change the number of command lines saved in the recall buffer by setting
!EDIT_INPUT equal to a number other than one. (in the IDL Development
Environment, you can set this value in the Preferences dialog as well.) In order for

Generate IDL
keyboard interrupt

Ctrl+C Ctrl+C Ctrl+break Command
+period

Move back one line
in recall buffer

Ctrl+N, Up
arrow

Ctrl+B,

Up arrow

Up arrow Ctrl+N, Up
arrow

Move forward one
line in recall buffer

Down arrow Down
arrow

Down arrow Down arrow

Redraw current line Ctrl+R Ctrl+R

Overstrike/Insert ESC-I Ctrl+A

EOF if current line
is empty, else EOL

Ctrl+D

Search recall buffer
for text

At Xterm
command
line: use ^ ,
then input
text at
prompt.

At IDLDE
command
line: NA.

PF1, then
input text at
prompt

^ , then input
text in dialog
box

Insert the character
at the current
Executive
Commands
position

any
character

any
character

any character any character

Function UNIX VMS Windows Macintosh

Table 2-2: Command Recall and Line Editing Keys
Input to IDL Using IDL

Chapter 2: Running IDL 37
the change to take effect, IDL must be able to process the assignment statement
before providing a command prompt. This means that you must put the assignment
statement in the IDL startup file. (See “Startup File” on page 58 for more information
on startup files.)

For example, placing the line

!EDIT_INPUT = 50

in your IDL startup file changes the number of lines saved in the command recall
buffer to 50.
Using IDL Input to IDL

38 Chapter 2: Running IDL
Executive Commands

IDL executive commands compile programs, continue stopped programs, and start
previously compiled programs. All of these commands begin with a period and must
be entered in response to the IDL prompt. Commands can be entered in either
uppercase or lowercase and can be abbreviated. Under UNIX, filenames are case
sensitive, while with VMS, Windows, and the Macintosh either case can be used.
Note that comments (prefaced by the semicolon character in IDL code) are not
allowed within executive commands. Executive commands are summarized in the
table below. See the IDL Reference Guide for in-depth descriptions of these
commands.

Command Action

.COMPILE Compiles text from files or keyboard without
executing

.CONTINUE Continues execution of a stopped program

.EDIT Opens files in editor windows of the IDLDE
(Windows and Motif only)

.FULL_RESET_SESSION Does everything .RESET_SESSION does, plus
additional reset tasks such as unloading sharable
libraries

.GO Executes previously compiled main program from
beginning

.OUT Continues program execution until the current
routine returns

.RESET_SESSION Resets much of the state of an IDL session without
requiring the user to exit and restart the IDL
session

.RETURN Continues execution until encountering a
RETURN statement

Table 2-3: Executive Commands
Executive Commands Using IDL

Chapter 2: Running IDL 39
.RNEW Erases main program variables and then executes
.RUN

.RUN Compiles and possibly executes text from files or
keyboard

.SKIP Skips over the next statement and then single steps

.STEP Executes a single statement (abbreviated as .S)

.STEPOVER Executes a single statement if the statement does
not call a

routine (abbreviated as .SO)

.TRACE Similar to .CONTINUE, but displays each line of
code before execution

Command Action

Table 2-3: Executive Commands
Using IDL Executive Commands

40 Chapter 2: Running IDL
Setting Up a Printer in IDL

IDL allows you two ways to print: from the IDL command line and also from the File
menu. First however, you will need to specify and configure a print device.

IDL Printing in Windows

Setting up a printer in IDL for Windows uses the normal Windows Printer Setup
dialog. For more information on setting up a Printer on Windows, see your Windows
operating system documentation or support.

IDL Printing in Macintosh

Setting up a printer in IDL for Macintosh uses the normal printer setup procedure.
From the Apple menu, select Chooser. For more information on setting up a Printer
on Macintosh, see your Macintosh operating system documentation or support.

IDL Printing in UNIX

Setting up a printer on IDL for UNIX, the Xprinter (PostScript, PCL and RTL) print
manager used. This section will introduce you to the functionality of Xprinter.

Setting up a Printer with Xprinter

The Xprinter Setup dialog provides a user interface for selecting certain model-
specific printer options such as paper trays, paper size, page orientation, and the
spooler command.

Note
With Xprinter 3.3.1 (UNIX) the config file is called .xprinterDefaults, however on
VMS, it is still called .xpdefaults.

The Xprinter Setup dialog also offers:

• Reading default configuration information from file $HOME/.Xpdefaults, which
is your local setup information file

• After presenting this information, lets you modify these defaults, allowing you
to then choose one of these options:

• Save default changes and store them in $HOME/.Xpdefaults

• Cancel the changes
Setting Up a Printer in IDL Using IDL

Chapter 2: Running IDL 41
Printer Setup Dialog Buttons

The action area of the Printer Setup dialog contains up to six buttons:

Figure 2-3: The Printer Setup Dialog

Button Description

Apply Writes current configuration information to your default
printer information file $HOME/.Xpdefaults.

Save Writes current configuration information to your default
printer information file $HOME/.Xpdefaults.

Reset Reloads default configuration from $HOME/.Xpdefaults.

Cancel Closes dialog and cancels all configuration changes.

Options Displays the options dialog box that lets you select an
alternate printer setup. This button is disabled if output is
configured to be sent to a file instead of a printer.

Install Displays the installation dialog box that allows you to add or
remove printer devices and printer ports from the
$HOME/.Xpdefaults file.

Table 2-4: Printer Setup Dialog Buttons
Using IDL Setting Up a Printer in IDL

42 Chapter 2: Running IDL
Configuring Printer Setup Options

Specify the following options on the initial Printer Setup dialog:

Option Description

Output Format: Specify whether to send output to a file or a printer. If you
choose Printer Specific, you can send output to any printer
type/port combination configured in your $HOME/.Xpdefaults
file. If the port is FILE: (as in the example here), Xprinter
creates an output file for the specified printer type. If you
choose Generic (File Only), print output is sent to an
Encapsulated PostScript or generic PCL file.

Printer: This field appears only if you select Output Format: Printer
Specific. It specifies the name of the default printer type/port
to which to send print output. Click the Options button to
specify a different printer type/port combination.

File Name: This field appears only if you choose Output Format: Generic
(File Only). Type the name of the print file you wish to create.
To pipe print output to a command, enter a ! character as the
first character and then specify the command to which to send
output. For example, to send output to the lp command, enter
the following:

!lp -d ps

EPSF

PCL4

PCL5

This field only appears if you select Output Format: File.
Click this button to display a list of output file types and select
the desired type. Available types are EPSF (Encapsulated
PostScript), PCL4, and PCL5.

Orientation Specify portrait or landscape.

Scale To increase the size of the output, specify a value greater than
1.00. To reduce the size, specify a value less than 1.00. For
example, a value of 2.00 would double the size of the output;
a value of 0.50 would reduce it by half.

Copies Specify the number of copies to print.

Table 2-5: Specifying Printer Setup Options
Setting Up a Printer in IDL Using IDL

Chapter 2: Running IDL 43
To set additional options, such as selecting a different printer or changing the page
size, click the Options button. The Options dialog appears.

Use this dialog to set the Printer Setup options:

Adding a New Printer to the List of Printer Choices

To add a new printer to your list of available printers:

• Define a port, which is an alias for the print command.

Figure 2-4: The Options Dialog

Option Description

Printer Name Use this field to change the Printer on the Setup dialog. Click
the down arrow to display a list of configured printers.

Resolution Specify printer resolution with this field. Values vary
depending on printer.

Page Size Specify paper size with this field. Values vary depending on
printer.

Paper tray Specify paper tray with this field. Values vary depending on
printer.

Duplex Specify duplex options (if the selected printer supports duplex
printing). Valid values include None (no duplex printing),
Duplex Tumble (flips over the short edge), and Duplex No
Tumble (flips over the long edge). If the selected printer does
not support duplexing, this field is disabled.

Table 2-6: The Printer Setup Options
Using IDL Setting Up a Printer in IDL

44 Chapter 2: Running IDL
• Associate the port with the printer’s PPD file.

To Define a New Port

To define a new port using the Printer Setup dialog:

• Display the Ports dialog. From the Printer Setup dialog, select Install, Add
Printer, and Define New Port.

Type the port definition in the Edit Port edit box. Port definitions have the following
format:

port=print_command

The print_command is the command for sending output to the printer port. If you
were to have two printers named ORION and SIRIUS for example, the definitions
would appear as follows:

ORION=rsh bandit "lp -d ps"
SIRIUS=rsh bandit "lp -d ps -T pcl5"

Both printers here are connected to the system bandit, so the print command is a
remote shell command executed on bandit. ORION is a PostScript printer, so the
command lp -d ps is executed on bandit to print to ORION. SIRIUS though is a PCL5
printer, so the print command executed on bandit to print to SIRIUS is lp -d ps -T pcl5.

• Click Add/Replace and the new port is now included in the list of current port
definitions.

• Repeat the above step for each printer to which you wish to send output.

Figure 2-5: Defining a New Port
Setting Up a Printer in IDL Using IDL

Chapter 2: Running IDL 45
Note
To create a printer port for each available queue on hp700 systems, click the
Spooler button on the Ports dialog. This command creates a default printer port for
each available printer queue returned by the lpstat -a command.

Modifying an Existing Port

In order to modify an existing port using the Printer Setup dialog:

• Display the Ports dialog. From the Printer Setup dialog, click Install. Add
Printer, and Define New Port.

• Select the port you wish to modify and edit the port information in the Edit
Port edit box.

• Click Add/Replace. The modified port is now included in the list of current
port definitions.

Matching a Printer Device to a Port

In order to match a printer device to a port using the Printer Setup dialog:

• Display the Add Printer dialog. From the Printer Setup dialog, click Install and
Add Printer.

• In the Printer Devices field, select the description that matches the printer you
are to install. If no description matches this printer, contact your printer vendor
for a printer description (PPD) file.
Using IDL Setting Up a Printer in IDL

46 Chapter 2: Running IDL
• Select the desired port in the Current Port Definitions list box and click Add
Selected. The new printer is now included in the list of currently installed
printers.

Removing an Installed Printer

In order to remove a printer device/port combination using the Printer Setup dialog:

• Display the Printer Installation dialog. From the Printer Setup dialog, click
Install.

• In the Currently Installed Printers list box, select the printer you wish to
remove and click on Remove Selected.

Modifying Default Printer Setup Values

Xprinter retrieves default printer setup information from the file .Xpdefaults in your
home directory. If this file does not exist, Xprinter reads the information from the file
$XPHOME/xprinter/Xpdefaults or $XPPATH/Xpdefaults. The Xprinter Printer Setup
dialog writes modifications to the default information in $HOME/.Xpdefaults.
However, it never modifies the default information in the file $XPHOME/Xpdefaults
or $XPPATH/Xpdefaults. If the file $HOME/.Xpdefaults does not already exist, the
Xprinter Printer Setup dialog creates it.

Although the most common way to modify the default Printer Setup is using the
Printer Setup dialog, which updates $HOME/.Xpdefaults automatically, you may also
edit this file with any text editor and make changes directly.

You may also set up the $HOME/.Xpdefaults file to do the following:

• Define printer ports.

Figure 2-6: Adding a Printer
Setting Up a Printer in IDL Using IDL

Chapter 2: Running IDL 47
• Match printer types to defined ports.

• Specify the default printer.

• Specify printer-specific options.

Defining a Port

A printer port is an alias for the print command. It is defined in the [ports] section of
$HOME/.Xpdfaults and appears as part of the Printer Name in the Printer Setup dialog.
For instance, the following is the first Printer Name in the Printer Setup dialog before
you make any changes to $HOME/.Xpdefaults:

AppleLaserWriter v23.0 PostScript on FILE:

For this Printer Name, FILE: is the port name. To send output to a printer instead of a
file, you first must define a port for each printer to which you wish to direct output.
Port entries in the [ports] section have this format:

port=print_command

The print_command is the command for sending output to the printer port. For
instance, if you have two printers (ORION and SIRIUS), your [ports] section may
appear as follows:

[ports]
ORION=rsh bandit "lp -d ps"
SIRIUS=rsh bandit "lp -d ps -T pcl5"

In the above, both printers are connected to the system bandit, so the print command
is a remote shell command executed on bandit. ORION is a PostScript printer, so the
command lp -d ps is executed on bandit to print to ORION. SIRIUS, though, is a
PCL5 printer, and thus the print command executed on bandit to print to SIRIUS is lp
-d ps -T pcl5.

If a printer is connected to your local system, you will need to add an entry for that
printer as well. For the local printer, your entry should be like the following:

[ports]
ORION=rsh bandit "lp -d ps"
SIRIUS=rsh bandit "lp -d ps -T pcl15"
LOCAL=lp -d ps

Your printer port can be any name you choose except FILE:, which is the only
reserved port name. It causes Xprinter to create a print file formatted specifically for
the specified printer type.

An entry must be created in the [ports] section for every printer to which you wish to
be able to print.
Using IDL Setting Up a Printer in IDL

48 Chapter 2: Running IDL
Matching a Printer Type to a Defined Port

After you have defined a port for each printer, you must tell Xprinter what type of
printer is associated with each port. List device types in the [devices] section of the
.Xpdefaults file. Each entry in the [devices] section has the following format:

alias=PPD_file driver,port

Note
There must be a space between the PPD_file and driver and a comma between the
driver and the port. The following table describes each part of this entry.

Here’s an example configuring three printers:

Field Description

alias The alias is a descriptive name used to identify the printer. It
can be anything you choose. The alias is the name which
appears in the Printer Setup dialog (such as HP LaserJet III SI
PostScript).

PPD_file The PPD_file is the name of the printer description (PPD) file
used by the printer, without a .PPD extension. Search in the
directory $XPHOME/xprinter/ppds/ to find the PPD file for
your printer.

driver The driver is the type of driver your printer uses. Value values
are PostScript, PCL4, and PCL5.

port The port is the printer port as listed in the [ports] section of
the .Xpdefaults file (ORION, SIRIUS, and LOCAL in the
example [ports] section).

Table 2-7: Associating a Printer with a Port

Port Printer Type Output Type

ORION HP LaserJet IIISi PostScript v52.3 PostScript

SIRIUS HP LaserJet 4M PCL Cartridge PCL

LOCAL QMS-PS 2200 v52.3 PostScript

Table 2-8: Example Configuration
Setting Up a Printer in IDL Using IDL

Chapter 2: Running IDL 49
First, be sure to choose an alias for each printer. In order to make it simpler to
identify the printer from the Printer Setup dialog you wish to use, you may use the
following aliases:

HP LaserJet PS
HP LasterJet PCL
QMS PS

It is important to note that if you utilize the Printer Setup dialog to associate ports and
PPD files, you cannot specify a printer alias. You must instead choose an alias from
the predefined listing that appears in the Printer Devices list box in the Add Printer
dialog. The corresponding PPD file is already associated with the printer aliases in
this list box.

Now, identify the PPD file associated with each of these printers. In the
$XPHOME/xprinter/ppds/filename.map file, you can find a PPD file for the printer on
port ORION (hp3si523.ppd)a PPD file for the printer on port LOCAL (q2200523.ppd),
and a PPD file for the printer on port SIRIUS (hp4m.ppd).

Thus the [devices] section of the .Xpdefaults file would be as follows:

[devices]
HP LaserJet PS=HP3SI523 PostScript,ORION
HP LaserJet PCL=HP4M PCL,SIRIUS
QMS PS=Q2200523 PostScript,LOCAL

After these entries have been added to your .Xpdefaults file, the following printer
choices are available from the Printer Setup dialog:

HP LaserJet PS on ORION
HP LaserJet PCL on SIRIUS
QMS PS on LOCAL

Specifying a Default Printer

After you have configured all available printers, you may select one of them as the
default printer. To make a specific printer the default printer on the Printer Setup
dialog, add an entry (in the following format) to the [windows] section of the
.Xpdefaults file:

[windows]
device=PPD_file,driver,port

Simply provide the same information that you used in the [devices] section. Only the
format of the entry is different; there is a comma between the PPD_file and the driver
instead of a space.
Using IDL Setting Up a Printer in IDL

50 Chapter 2: Running IDL
For example, suppose you wish the default printer to be the printer at port ORION.
The [windows] section would appear as follows:

[windows]
device=HP3SI523,PostScript,ORION
[ports]
ORION=rsh bandit "lp -d ps"
SIRIUS=rsh bandit "lp -d ps -T pcl5"
LOCAL=lp -d ps
[devices]
HP LaserJet PS=HP3SI523 PostScript,ORION
HP LaserJet PCL=HP4M PCL,SIRIUS
QMS PS=Q2200523 PostScript,LOCAL

In your default .Xpdefaults file, the [windows] entry appears:

[windows]
device=NULL,PostScript,FILE:

Since no PPD file is listed (NULL), the default on the Printer Setup dialog is to print
generic PostScript to a file. You may specify the filename and change the type of
output to PCL on the Printer Setup dialog.

Specifying Printer-Specific Options

You may include a section that lists the default printer-specific options for each
printer defined in the devices section. The options available vary between differing
printers, but typical options include number of copies, page size, paper tray, and
orientation. An example follows of a printer-specific section for a default printer in
the example .Xpdefaults file:

[HP3SI523,PostScript]
Scale=0.80
Copies=1
PaperTray=Lower
PageSize=Letter
Orientation=Portrait
DPI=300
Setting Up a Printer in IDL Using IDL

Chapter 2: Running IDL 51
Printing Graphics

Beginning with IDL version 5.0, IDL interacts with a system-level printer manager to
allow printing of both IDL Direct Graphics and IDL Object Graphics. On Windows
and Macintosh platforms, IDL uses the operating system’s built-in printing facilities;
on UNIX and VMS platforms, IDL uses the Xprinter print manager from Bristol
Technology.

Use the DIALOG_PRINTERSETUP and DIALOG_PRINTJOB functions to
configure your system printer and control individual print jobs from within IDL.

Note
IDL does not support tiling or printing multi-page documents.

Printing IDL Direct Graphics

To print IDL Direct Graphics, you must first use the SET_PLOT procedure to make
PRINTER your current device. Issue IDL commands as normal to create the image
you wish to print, then use the CLOSE_DOCUMENT keyword to DEVICE to
actually initiate the print job and print something from your printer. See “IDL
Graphics Devices” in Appendix B of the IDL Reference Guide for details.

Printing IDL Object Graphics

To print IDL Object Graphics, you must create a printer object to use as a destination
for your Draw operations. See Chapter 28, “Printer Objects” for information about
printer objects and their use.
Using IDL Printing Graphics

52 Chapter 2: Running IDL
Preparing and Running Programs

To enter a short program or procedure from the keyboard, simply type .RUN or
.RNEW. When the final END statement is encountered, execution of the main
program will begin if there was an END statement and if no errors were found. If you
entered only functions or procedures or if the main program you entered had an error,
IDL will display the IDL prompt to show that a program is not running.

Usually, any text editor can be used to prepare programs or procedures of more than a
few lines. The GUI front-end for IDL includes a built-in text editor, but this need not
be used if you prefer to use your own text editor or word processor. Files containing
IDL programs, procedures, and functions are assumed to have the extension name
.pro. Once the program has been entered into a file from an editor, run IDL and
compile one or more program files using .RUN or .RNEW.

Format of Program Files

There are essentially four types of code units in files containing IDL statements:

Procedure

A self-contained code unit with a unique name that is called by other code units to
perform a desired function. The calling code unit and the procedure communicate via
passed arguments.

Function

A self-contained code unit similar to a procedure. The only difference is that a
function returns a value and can therefore be used in expressions.

Main Program

A series of statements that are not preceded by a procedure or function heading. They
do, however, require an END statement. Since there is no heading, it cannot be called
from other routines and cannot be passed in arguments. When IDL encounters a main
program as the result of a .RUN executive command, it compiles it into the special
program named $MAIN$ and immediately executes it. Afterwards, it can be executed
again by using the .GO executive command.

Include File

A file to be included in other files. The statements contained in an include file are
textually inserted into the including file. See “Batch Execution” on page 56. A file
can contain any combination of functions, procedures, and/or include files. For
Preparing and Running Programs Using IDL

Chapter 2: Running IDL 53
example, a file might contain three procedures and two functions and also might be
included in another file.

See Chapter 9, “Introduction to IDL Programming” in the Building IDL Applications
manual for more information on creating programs in IDL.

Executing Program Files

Automatic Execution

When a file is specified by typing only the filename at the IDL prompt, IDL searches
the current directory for filename.pro (where filename is the file specified) and then
for filename.sav. If no file is found in the current directory, IDL searches in the same
way in each directory specified by !PATH. If a file is found, IDL automatically
compiles the contents and executes any functions or procedures that have the same
name as the file specified (excluding the suffix).

Explicit Execution

When a file is specified with the .RUN, .RNEW, .COMPILE, or @ commands, IDL
searches the current directory for filename.pro (where filename is the file specified)
and then for filename. If no file is found in the current directory, IDL searches in the
same way in each directory specified by !PATH. If a file is found, IDL compiles or
runs the file as specified by the executive command used.

Warning
If the current directory contains a subdirectory with the same name as filename, IDL
will consider the file to have been found and stop searching. To avoid this problem,
specify the extension (.pro or .sav, usually) when entering the run, compile, or batch
file command.

The details of how !PATH is initialized and used differ between the various operating
systems, although the overall concept is the same. See “!PATH” in Appendix D of
the IDL Reference Guide for more information.

Interrupting Program Execution

Programs that are running can be manually stopped by typing Ctrl+C (UNIX and
VMS), Ctrl+Break (Windows) or Command+. (Macintosh). This action is called a
keyboard interrupt. A message indicating the statement number and program unit
being executed is issued on the terminal acknowledging the interrupt. The values of
variables can be examined, statements can be entered from the keyboard, and
Using IDL Preparing and Running Programs

54 Chapter 2: Running IDL
variables can be changed. The program can be resumed by typing the executive
command .CONTINUE to resume or .S to execute the next statement and stop.

Variable Context After Interruption

The variable context after a keyboard interrupt is that of the program unit in which
the interrupt occurred. By typing the statement RETURN, the program context will
revert to the next higher calling level. The RETALL command returns control to the
main program level. If any doubt arises as to which program unit in which the
interrupt occurred, the HELP procedure can be used to determine the program
context. IDL checks after each statement to see if an interrupt has been typed.
Execution does not stop until the statement that was active finishes; thus, a long time
can elapse from the time the interrupt is typed to the time the program interrupts.

Aborting IDL

If you find it necessary to abort IDL rather than exiting cleanly using the EXIT
command, do one of the following:

• UNIX: As with any UNIX process, IDL can be aborted by typing Ctrl+\.This is
a very abrupt exit—all variables are lost, and the state of open files will be
uncertain. Thus, although it can be used to exit of IDL in an emergency, its use
should be avoided.

Note
After aborting IDL by using Ctrl+\, you may find that your terminal is left in the
wrong state. You can restore your terminal to the correct state by issuing one of the
following UNIX commands:

% reset or % stty echo -cbreak

• VMS: As with any VMS program, IDL can be aborted by typing Ctrl+Y.
Aborting IDL with Ctrl+Y should only be used as an emergency measure since
all the variables are lost and some output may disappear. It is possible to
resume IDL by typing the DCL command:

$ CONTINUE

However, if any DCL command that causes VMS to run a new program is issued
prior to the CONTINUE command, the IDL session will be irreversibly lost.

• Windows and Macintosh: There is no abort character for either IDL for
Windows or IDL for Macintosh.
Preparing and Running Programs Using IDL

Chapter 2: Running IDL 55
Issuing Operating System Commands

UNIX and VMS operating system commands can be sent to a subprocess for
execution by entering the $ character followed by the command at the IDL prompt.
Under Windows, $ can be used to enter a DOS or Command Shell command at the
IDL prompt.

The SPAWN procedure is a more flexible way of accomplishing the same thing
because it can be used within an IDL program while $ can only be entered
interactively. In addition, the standard output of the command can be saved in an IDL
string array by SPAWN. Hence, $ can be thought of as an interactive-only
abbreviation for SPAWN. Unlike $, SPAWN can also be used on the Macintosh.

For more information on the SPAWN procedure, see SPAWN in the IDL Reference
Guide and Chapter 2, “Using SPAWN” in the External Development Guide.
Using IDL Issuing Operating System Commands

56 Chapter 2: Running IDL
Batch Execution

IDL can be run in the non-interactive mode (the batch mode) by entering the
character @ followed by the name of a file containing IDL executive commands and
statements. All executive commands and IDL statements that normally come from
the keyboard are read from the specified file.

Batch execution can be terminated before the end of the file, with control returning to
the interactive mode without exiting IDL, by calling the STOP procedure from the
batch file. Calling the EXIT procedure from the batch procedure has the usual effect
of terminating IDL.

To enter batch mode from the interactive mode, enter:

@filename

at the IDL prompt. (Note that the @ symbol must be the first character on the line in
order for it to be interpreted properly.) IDL reads commands from the specified file
until the end of the file is reached. Batch files can be nested by simply prefacing the
name of the new batch file with the @ character. As stated above, the current
directory and then all directories in the !PATH system variable are searched (if the
file was not found in the current directory). The filename can also include full path
specifications (e.g., when the batch file resides in a directory that isn’t included in
!PATH).

IDL only searches the !PATH directories for .sav and .pro files. There are two ways to
get IDL to execute your batch/include file:

• Add the directory with your batch file to !PATH, and make sure it has a .pro
extension (e.g. "mybatch.pro")

• Make the directory with your batch files the working directory, either by
launching IDL from there, or using the CD routine

The only way to execute a simple ASCII batch/include file that does not have a .pro
extension is if it is in the working directory, or if you supply the full path
specification.

Interpretation of Batch Statements

Each line of the batch file is interpreted exactly as if it was entered from the
keyboard. In the batch mode, IDL compiles and executes each statement before
reading the next statement. This differs from the interpretation of programs compiled
Batch Execution Using IDL

Chapter 2: Running IDL 57
using .RNEW or .RUN, in which all statements in a program are compiled as a single
unit and then executed.

Labels are illegal in the batch mode because each statement is compiled and executed
independently.

Multiline statements must be continued on the next line using the $ continuation
character, because IDL terminates every interactive mode statement not ending with
$ by an END statement. A common mistake is to include a multiple-line block
statement in a batch file as shown below.

; This will not work in batch mode.
FOR I = 1, 10 DO BEGIN

A = X[I]
...
...

ENDFOR

In the batch mode, IDL compiles and executes each line separately, causing syntax
errors in the above example because no matching ENDFOR is found on the line
containing the BEGIN statement when the line is compiled. The above example
could be made to work by writing the block of statements as a single line using the $
(continuation) and & (multiple commands on a single line) characters.

Batch Examples

An example of an IDL executive command line that initiates batch execution:

@myfile

This command causes the file myfile.pro to be used for statement and command input.
If this file is not in the current directory, the search path !PATH is also searched.

 An example of the contents of a batch file follows:

; Run program A:
. RUN proga
; Run program B:
. RUN progb
; Print results:
PRINT, AVALUE, BVALUE
; Close unit 3:
CLOSE, 3
<eof>

The batch file should not contain complete program units. Complete program units
should be compiled and run by using the .RUN and .RNEW commands in the batch
files, as illustrated above.
Using IDL Batch Execution

58 Chapter 2: Running IDL
Startup File

The startup file is an IDL batch file that contains a series of IDL statements which are
executed each time IDL is run. Common uses are to compile frequently used
procedures or functions, customize default settings, load data, and perform other
useful operations. It contains IDL statements that are individually compiled and
executed in the same manner as batch file execution.

• UNIX: To make IDL execute a startup file under UNIX, set the environment
variable IDL_STARTUP to the name of the file to be executed. If
IDL_STARTUP is not defined, a startup file is not executed.

• VMS: To make IDL execute a startup file under VMS, assign the VMS logical
name IDL_STARTUP to the name of the file to be executed. If
IDL_STARTUP is not defined, a startup file is not executed.

• Windows: To make IDL execute a startup file under Windows, specify the
name of the startup file in the Startup dialog, found under Preferences in the
IDL for Windows File menu.

• Macintosh: To make IDL execute a startup file on the Macintosh, specify the
name of the startup file in the IDL Startup Settings dialog, found under
Preferences in the IDL for Macintosh Edit menu.

The procedure search path, !PATH, is used when searching for the file if it is not in
the current directory. Startup command files are executed before the batch file
present in the initial command line, if any.
Startup File Using IDL

Chapter 2: Running IDL 59
Non-Interactive IDL

Under UNIX and VMS, IDL can be run entirely in the non-interactive mode by
including the name of a file containing batch mode commands in the shell command
used to invoke IDL. When the end of the file is reached, control reverts to the
interactive mode and input is accepted from the keyboard. Call the EXIT procedure
from the file to cause IDL to return to the operating system if you do not want to use
IDL in the interactive mode. The operating system command:

idl startup

runs IDL. IDL then executes in batch mode the text in the file startup.pro and reverts
to the interactive mode if a call to EXIT is not present in the file.

Note
If you want IDL to display anything to a window in non-interactive mode, IDL
requires that a valid DISPLAY environment variable be set. This means that you
must be logged into a machine to which IDL has access, and that the DISPLAY
environment variable be set to that machine. This is only a requirement when
displaying to screen device. To avoid this requirement, you could use another
device such as the Z buffer or PostScript device.
Using IDL Non-Interactive IDL

60 Chapter 2: Running IDL
SAVE and RESTORE

The SAVE and RESTORE procedures combine to provide the ability to save the state
of variables, system variables, and procedures and functions to restore them at a later
time. This ability to checkpoint a session and then recover it later can be very
convenient. SAVE/RESTORE files can be used for many purposes.

Save files can be used to recover variables that are used from session to session. A
startup file can be set up to execute the RESTORE command every time IDL is
started. (See “Startup File” on page 58 for details on startup files.)

Save files can be used to distribute IDL code in binary format. If you have a program
or programs you wish to distribute, but do not want other to be able to view or edit the
source code, use a save file.

The state of an IDL session can be saved quickly and easily, and can be restored to
the same point. This feature allows you to stop work, and later resume at a convenient
time.

Data can be conveniently stored in SAVE/RESTORE files, relieving the user of the
need to remember the dimensions of arrays and other details. It is very convenient to
store images this way. For instance, if the three variables R, G, and B hold the color
table vectors, and the variable I holds the image variable, the IDL statement,

SAVE, FILENAME = 'image.dat', R, G, B, I

will save everything required to display the image properly in a file named image.dat.
At a later date, the simple command,

RESTORE, 'image.dat'

will recover the four variables from the file.

Long iterative jobs can save their partial results in SAVE/RESTORE format to guard
against losing data if some unexpected event such as a machine crash should occur.

Note
Save files that contain IDL procedures, functions, and programs are not always
portable between different versions of IDL. In this case, you will need to recompile
and then save the files in the current version of IDL.
SAVE and RESTORE Using IDL

Chapter 2: Running IDL 61
Journaling

Journaling provides a record of an interactive session by saving in a file all text
entered from the terminal in response to a prompt. All text entered to the IDL prompt
is entered directly into the file, and any text entered from the terminal in response to
any other input request (such as with the READ procedure) is entered as a comment.
The result is a file that contains a complete description of the IDL session.

JOURNAL has the form:

JOURNAL[, Argument]

where Argument is either a filename (if journaling is not currently in progress) or an
expression to be written to the file (if journaling is active).

The first call to JOURNAL starts the logging process. If no argument is supplied, a
journal file named idlsave.pro is started.

Warning
Under all operating systems except VMS, creating a new journal file will cause any
existing file with the same name to be lost. Supply a filename argument to
JOURNAL to avoid destroying desired files.

When journaling is not in progress, the value of the system variable !JOURNAL is
zero. When the journal file is opened, the value of this system variable is set to the
number of the logical file unit on which the file is opened. This allows IDL routines
to check if journaling is active. You can send any arbitrary data to this file using the
normal IDL output routines. In addition, calling JOURNAL with an argument while
journaling is in progress results in the argument being written to the journal file as if
the PRINT procedure had been used. In other words, the statement,

JOURNAL,

is equivalent to

PRINTF, !JOURNAL, Argument

with one significant difference—the JOURNAL statement is not logged to the file,
only its output; while the PRINTF statement will be logged to the file in addition to
its output.

Journaling ends when the JOURNAL procedure is called again without an argument
or when IDL is exited. The resulting file serves as a record of the interactive session
that went on while journaling was active. It can be used later as an IDL batch input
Using IDL Journaling

62 Chapter 2: Running IDL
file to repeat the session, and it can be edited with any text editor if changes are
necessary.

As an example, consider the following IDL statements:

;Start journaling to file demo.pro:
JOURNAL, 'demo.pro'
;Prompt for input:
PRINT, 'Enter a number:'
;Read the user response into variable Z:
READ, Z
;Send an IDL comment to the journal file using JOURNAL:
JOURNAL, '; This was inserted with JOURNAL.'
;Send another comment using PRINTF:
PRINTF, !JOURNAL, '; This was inserted with PRINTF.'
;End journaling:
JOURNAL

If these statements are executed by a user named Doug on a Sun workstation named
quixote, the resulting journal file demo.pro will look like the following:

; IDL Version 5.3 (sunos sparc)
; Journal File for doug@quixote
; Working directory: /home/doug/IDL
; Date: Mon Sept 9 14:38:24 1999

PRINT, 'Enter a number:'
;Enter a number:
READ, Z
; 87
; This was inserted with JOURNAL.
; This was inserted with PRINTF.
PRINTF, !JOURNAL, '; This was inserted with PRINTF.'

Note that the input data to the READ statement is shown as a comment. In addition,
the statement to insert the text using JOURNAL does not appear, while the statement
using PRINTF does appear.
Journaling Using IDL

Chapter 3:

The IDL for
Windows Interface

IDL for Windows has a convenient multiple-document interface called the IDL Development
Environment (IDLDE) that includes built-in editing and debugging tools. This chapter describes
the IDLDE. The following topics are covered in this chapter:
The Main IDL Window 64
IDLDE Windows . 67
The Menu Items . 69

Keyboard Shortcuts 84
Customizing IDL . 86
Windows IDL Differences 98
Using IDL 63

64 Chapter 3: The IDL for Windows Interface
The Main IDL Window

When you start IDL, the main IDL window appears (shown in the figure below). The
components of this window are described below.

Docking/Undocking

Four sections of the IDLDE can be moved within and unanchored from the main
IDLDE window: the Tool Bar, Output Log, Variable Watch Window, and
Command Input Line. Click on the border and drag the left mouse button. You will
notice the outline of the section you have chosen moving with your mouse. When you
are satisfied with a location, let go of the mouse button to dock the window. If you
move this outline so that it overlaps an edge of the window space being used by the
IDLDE, the section will be docked to the nearest available side of the main IDLDE
window. The Tool Bar, Output Log, Variable Watch Window, and Command
Input Line will remain between the Menu Bar and the Status Bar when docked.
They can be docked in any order against an edge. If the outline doesn’t overlap an

Figure 3-1: The IDL Development Environment for Windows

Menu Bar

Tool Bar

Projects Window

Multiple
Document
Panel

Output Log

Variable Watch
Window

Command
Input Line

Status Bar
The Main IDL Window Using IDL

Chapter 3: The IDL for Windows Interface 65
edge, the section will float on the desktop. If you hold down the [Ctrl] key, the
sections will float on the desktop instead of docking to the nearest available side of
the IDLDE.

Menu Bar

The menu bar, located at the top of the main IDL window, has features which enable
you to control various IDLDE features. When you select an option from a menu item
in the IDLDE, the Status Bar displays a brief description.

Tool Bars

You can choose any combination of three tool bars: Standard, Run & Debug, and
Macros. To change the toolbars displayed, use the Windows menu to access the
Toolbar pulldown menu and select or de-select any combination of the three
toolbars. In addition, when you open a GUIBuilder window, its associated toolbar is
displayed.

When you position the mouse pointer over a Toolbar button, the Status Bar displays
a brief description. If you click on a Toolbar button which represents an IDL
command, the IDL command issued is displayed in the Output Log.

Project Window

IDL Project Window allows you to manage, compile, run, and create distributions of
all the files needed to develop an IDL application. All of your application files can be
organized for ease of access, and to be easier to export to other developers,
colleagues, or users. For further information on the Projects Window, refer to Chapter
13, “Creating IDL Projects” in Building IDL Applications.

Multiple Document Panel

The top section of the main IDL window is where IDL Editor windows are displayed.
The Multiple Document Panel can be sized or made invisible by moving the
separator at the top of the Output Log or the Variable Watch Window, depending on
your IDLDE Preferences setup.

Output Log

Output from IDL is displayed in the Output Log window, which appears by default
when IDLDE is first started. The Output Log area can be sized by moving the
separator attached to the top of the Output Log. You can hide/display the Output Log
by clicking the Output Log toggle item in the Windows menu, by pressing
Using IDL The Main IDL Window

66 Chapter 3: The IDL for Windows Interface
[Ctrl+L], or by changing the Layout tab from Preferences in the File Menu. If you
click the right mouse button while positioned over the Output Log, a popup menu
appears allowing you to move to a specified error. Clear the contents of the Output
Log, or copy selected contents.

Variable Watch Window

The Variable Watch Window appears by default when you start the IDLDE. It
keeps track of variables as they appear and change during program execution. Size
the Variable Watch Window by moving the separator attached to the top. You can
hide/display the Variable Watch Window by clicking the Variable Watch toggle
item in the Windows menu, by pressing [Ctrl+A], or by changing the Layout tab
from Preferences in the File Menu. For more information about the Variable
Watch Window, see “The Variable Watch Window” in Chapter 18 of Building IDL
Applications.

Command Input Line

The Command Input Line is a single IDL prompt where you can enter IDL
commands. The text output by IDL commands is displayed in the Output Log
window. The Command Input Line can be made invisible by clicking the Command
Input toggle item in the Windows menu, by pressing [Ctrl+I] or by changing the
Layout tab from Preferences in the File menu.

If you click the right mouse button while positioned over the Command Input Line,
a popup menu appears displaying the command history, with a maximum buffer of 20
entries. If you enter HELP, /RETURN at the Command Input Line, you will see the
same results, except that you can specify the number of lines in the recall buffer with
the General Preferences tab from the File menu.

You can also open and compile files from the Command Input Line. See “Open...
[Ctrl+O]” on page 69 and “Compile filename.pro [Ctrl+F5]” on page 75 for more
information.

Status Bar

When you position the mouse pointer over a Toolbar button or select an option from
a menu in IDLDE, the Status Bar displays a brief description. The Status Bar can
be made invisible by clicking the Status Bar toggle item in the Windows menu or by
changing the Layout tab from Preferences in the File menu.
The Main IDL Window Using IDL

Chapter 3: The IDL for Windows Interface 67
IDLDE Windows

Three types of windows can be created within the IDLDE: IDL Editor windows, IDL
GUIBuilder windows, and IDL Graphics windows.

IDL Editor Windows

IDL Editor windows allow you to write and edit IDL programs (and other text files)
from within IDL. Any number of Editor windows can exist simultaneously.

No Editor windows are open when IDL is first started. Editor windows can be created
by selecting New then File from the File menu, or by selecting Open from the File
menu. You can also open windows using the toolbar buttons. When you minimize an
Editor window, a Windows title bar with the name of the file appears in the Multiple
Document Panel.

You can access different files from the Windows menu by clicking on the appropriate
numbered file. See “Using the IDL Editor” in Chapter 9 of Building IDL Applications
for more information on the IDL Editor.

If you click the right mouse button while positioned over an editor window, a popup
menu appears allowing you to quickly access several of the most convenient
commands. The popup menu changes to display common debugging commands if
IDL is running a program.

If a program error or breakpoint is encountered, IDLDE displays the relevant file,
opening it if necessary. The line at which the breakpoint or error occurred is marked.
See Chapter 18, “Debugging an IDL Program” in Building IDL Applications for
more on IDL’s debugging commands.

IDL GUIBuilder Windows

IDL GUIBuilder windows allow you to interactively create user interfaces. Then, you
can generate the IDL code that defines the interface and the code to contain the event-
handling routines. You can modify the code, compile, and run the application in the
IDLDE.

You can have any number of GUIBuilder windows open simultaneously.

To open a GUIBuilder window, you can select New then GUI from the File menu, or
you can select Open from the File menu. You can also open GUIBuilder windows
using the toolbar buttons.
Using IDL IDLDE Windows

68 Chapter 3: The IDL for Windows Interface
When you minimize a GUIBuilder window, a Windows title bar with the name of the
file appears in the Multiple Document Panel.

For information about the IDL GUIBuilder, see Chapter 21, “Using the
IDL GUIBuilder” in Building IDL Applications.

IDL Graphics Windows

IDL Graphics windows appear when you use IDL to plot or display data.

You can copy the contents of a Graphics window—Direct or Object—directly to the
operating system clipboard in a bitmap format using Ctrl-C.

When an IDL Graphics window is minimized (iconized), the icon displays the name
of the IDL window. This icon appears on the desktop, not in the Multiple Document
Panel, as with an iconized Editor window.

Warning
If the backing store is not set when a window is iconized, it will not be refreshed
upon return. For more information about setting the backing store for graphics
windows, see “Graphics Preferences” on page 90.
IDLDE Windows Using IDL

Chapter 3: The IDL for Windows Interface 69
The Menu Items

Six menus (File, Edit, Search, Run, Macros, Window, Help) allow you to control the
operation of IDLDE. These menus are described below.

File Menu

The File menu accesses and manipulates files.

New

From this option you can select Editor [Ctrl+N], GUI, or Project. If you select
Editor, a new IDL Editor window is opened. If you select GUI, a new IDL
GUIBuilder file is opened. If you select Project, the New Project dialog displays.
Each window is titled Untitledn or UntitledPrcn until saved with another name, n
being the numerical order of the new window opened.

For information about the IDL GUIBuilder, see Chapter 21, “Using the
IDL GUIBuilder” in Building IDL Applications.

Open... [CTRL+O]

Select this option to open a text file or a GUIBuilder *.prc portable resource file for
editing. The Open dialog appears. Select the file you want to open and click Open.
You can select a continuous range of files by holding down the Shift key after
selecting the first file. You can also select multiple separated files by selecting each
file while holding down the Control key. A new IDL Editor window is created to
contain each text file.

You can also open text files from the Command Input Line. To open text files, enter
the following at the IDL prompt:

.EDIT file1 [file2 ... filen]

where file is the name of the text file you want to open. If the path is not specified in
the Path Preferences from the File menu, you must enter the full path for file. See
.EDIT in the IDL Reference Guide for more information.

Close

Select this option to close the currently-selected IDL Editor window. If you have
made changes in an IDL Editor window, you are asked if you want to save the
changes before closing the window.
Using IDL The Menu Items

70 Chapter 3: The IDL for Windows Interface
Open Project...

Select this option to open a new IDL Project. The Open dialog appears. Select the
project you want to open and click Open.

Save Project

Select this option to save the current IDL Project. If the Project has not yet been
saved, you are prompted for a filename with the Save As dialog.

Save Project As...

Select this option to save the current IDL Project to a specified filename. The Save
As dialog appears.

Close Project

Select this option to close the current IDL Project. If you have made changes in to the
project, you are asked if you want to save the changes before closing the window.

Save [Ctrl+S]

Select this option to save the contents of an IDL Editor window. If the file has not yet
been saved, you are prompted for a filename with the Save As dialog.

Note
Changes made to a previously-compiled routine are not available to IDL until that
routine is re-compiled. Executing the routine without first saving and re-compiling
simply re-runs the previously-compiled version, without incorporating recent
changes.
Select the Compile option in the Run menu to return to the main program level and
re-compile the routine. Select Compile from Memory in the Run menu to save
and compile recent changes to a temporary file.

Save As...

Select this option to save the contents of an IDL Editor window to a specified
filename. The Save As dialog appears.

Revert to Saved

Select this option to reload the last saved version of the document.

Warning
Unsaved changes are lost without warning.
The Menu Items Using IDL

Chapter 3: The IDL for Windows Interface 71
Generate .pro

Select this option to generate source code files from GUIBuilder interface definitions.
When you generate code for the first time, all options open the Save As dialog so that
you can select a location and specify a filename. The following are generated:

• The widget definition code to a *.pro file.

• The event-handler callback code to a *_eventcb.pro file.

For information about the IDL GUIBuilder generated code, see “Generating Files” in
Chapter 21 in Building IDL Applications.

Print... [CTRL+P]

Select this option to print the contents of the currently-selected window to the
currently-active printer. The Print dialog appears. Use the Printers icon in the
Microsoft Windows Control Panel (found in the Main program group) to change the
currently-selected printer.

Print Setup...

Select this option to change the printer and printing options.

Recent Files

Select this option to view or open recently opened or created files. This menu item
lists the last ten opened or created files, and it includes both text and GUIBuilder
files. To open a file on this list, select it.

Recent Projects

Select this option to view or open recently opened project files.

Preferences...

Select this option to display a dialog box containing seven tab selections with which
you can customize your interaction with the IDLDE environment. The seven
Using IDL The Menu Items

72 Chapter 3: The IDL for Windows Interface
categories are: General, Layout, Graphics, Editor, Startup, Fonts and Path. For more
information about the Preferences, see “Customizing IDL” on page 86.

Exit [CTRL+Q]

Select this option to exit IDL.

Edit Menu

Undo [CTRL+Z]

Select this option to undo previous editing actions. Multiple undo operations are
supported; the first reverses the most recent operation, the next reverses the second

Tab Description

General This tab allows you to specify how the IDLDE begins and
ends, to control the number of lines in the recall buffer and the
Output Log, and to designate how the files should be opened
and read.

Layout This tab allows you to specify the location and size of the
main window on the screen. You can also designate which
components of the IDLDE will be visible.

Graphics This tab allows you to set the layout of the graphics window
and to specify the backing store.

Editor This tab allows you to customize the built-in IDL editor and
also offers several compiling options.

Startup This tab allows you to specify the main directory, the working
directory, and the startup file.

Fonts This tab allows you to specify different fonts, styles, and sizes
for the Editor, Command Input Line and Output Log.

Path This tab allows you to specify the IDL Files Search Path.
Your entries are appended to the system variable !PATH.

Exit Select this option to exit IDL for Windows. All IDL Editor
windows are closed before exiting. If text in an Editor
window has changed, you are prompted to save it before
exiting.

Table 3-1: Preference Dialog Tabs
The Menu Items Using IDL

Chapter 3: The IDL for Windows Interface 73
most recent operation, etc. If the most recent action is irreversible, this option will not
be accessible.

Redo [CTRL+Y]

Select this option to redo previously undone editing actions. Multiple redo operations
are supported; the first redo reverses the most recent undo, etc.

Cut [CTRL+X]

Select this option to remove currently-selected text from an IDL Editor window or
the Command Input Line to the Windows clipboard.

Copy [CTRL+C]

Select this option to copy the currently-selected text in an IDL Editor window,
Output Log window, or Command Input Line to the clipboard. Copy also allows you
to copy graphics from an IDL graphics window or draw widget to the clipboard.

Paste [CTRL+V]

Select this option to paste the contents of the Windows clipboard at the current
insertion point. The insertion point can only be placed in an IDL Editor window.

Delete [DEL]

Select this option to delete the currently-selected text. The deleted text is not placed
on the clipboard.

Select All

Use this option to highlight the entire contents of an IDL Editor window.

Clear All [CTRL+DEL]

Use this option to clear the entire contents of an IDL Editor window.

Clear Log

Use this option to clear the entire contents of the Output Log.

Properties

Select this option to open the GUIBuilder Properties dialog, which you can use to set
the attribute and event properties for a widget.

For information on the Properties dialog, see “Using the Properties Dialog” in
Chapter 21 in Building IDL Applications.
Using IDL The Menu Items

74 Chapter 3: The IDL for Windows Interface
Menu

Select this option to open the GUIBuilder Menu Editor, which you can use to define
menus for top-level base widgets and button widgets.

For information on the Menu Editor, see “Using the Menu Editor” in Chapter 21 in
Building IDL Applications.

Search Menu

Find... [CTRL+F]

Select this option to find text in an IDL Editor window or windows. The Search
dialog appears.

Enter the text to find in the field marked Search for: or choose an entry from the
pulldown list of recent search terms. To replace the found text with new text, check
the Replace with checkbox. Enter the replacement text in the field or choose an entry
from the pulldown list of recent replacement terms.

Click Find next to highlight the search text in your file. Click Replace to replace the
selected text.

Check the Case sensitive checkbox to match the case of the text you enter. Check
Whole words only to match only entire words (the default is to match sub-strings).
To replace all instances of the search text, check the Replace all checkbox and click
Replace. Select Forward from cursor or Backward from cursor to specify the
direction in which you would like to begin the search, or Entire file to search from
the beginning of the file.

By default, the search will take place in the currently-selected window. Choose a
different file or All Windows from the pulldown list marked Search in file to search
other windows.

Find Again [F3]

Select this option to repeat the previous Find.

Find Selection [CTRL+E]

Select this option to find the next occurrence of the selected text in an IDL Editor
window.

Replace... [CTRL+H]

Select this option to find text in an IDL Editor window and replace it with new text.
The Replace dialog box appears. The Replace dialog has the same controls as the
The Menu Items Using IDL

Chapter 3: The IDL for Windows Interface 75
Search dialog, described above in the Find item. By default, the Replace with
checkbox is checked.

Replace Again [SHIFT+F3]

Select this option to repeat the previous Replace.

Go To Line... [CTRL+G]

Select this option to jump directly to the specified line number in an IDL Editor
window. The Go To Line dialog appears.

Go To Definition [CTRL+D]

Use this option to go to and mark with a current line indicator (blue arrow) the
procedure or function call of the item next to which the cursor is positioned. The item
must be either user-defined or a procedure or function written in IDL, and must have
been compiled during the current IDLDE session.

Run Menu

Run Menu items are enabled when an IDL program is loaded into an IDL Editor
window and compiled. If you click the right mouse button while positioned over an
editor window, a popup menu appears allowing you to quickly access several of the
most convenient commands. The popup menu changes to display common debugging
commands if IDL is running a program. See Chapter 18, “Debugging an IDL
Program” in Building IDL Applications for more information.

Compile filename.pro [CTRL+F5]

Select this option to compile a .pro file. The currently-selected file is only recognized
as an IDL procedure or function if suffixed with .pro. Selecting this option is the
same as entering .COMPILE at the Command Input Line, with the appropriate Editor
window selected in the Multiple Document Panel.

You can also compile files from the Command Input Line. Enter the following at the
IDL prompt:

.COMPILE file1 [file2 ... filen]

where file is the name of the file you want to open. IDL opens your files in editor
windows and compiles the procedures and functions contained therein. If the path is
not specified in the Path Preferences from the File menu, you must enter the full
path for file.

See .COMPILE in the IDL Reference Guide for a more detailed explanation.
Using IDL The Menu Items

76 Chapter 3: The IDL for Windows Interface
Compile filename.pro from Memory [CTRL+F6]

Select this option to save and compile changes to the current editor window without
affecting the last-saved version of the file. The temporary file created allows you to
experiment without committing changes to the permanent file. Selecting this option is
the same as entering .COMPILE -f at the Command Input Line. See .COMPILE in the
IDL Reference Guide for a more detailed explanation.

Compile All

Select this option to compile all currently open *.pro files.

Run filename [SHIFT+F5]

Select this option to execute the file called filename contained in the currently-active
editor window. Selecting this option is the same as entering the procedure name at the
Command Input Line or using the .GO executive command at the Command Input
Line. If the file is interrupted while running, selecting this option resumes execution;
it is the same as entering .CONTINUE at the Command Input Line. For more
information, see .CONTINUE and .GO in the IDL Reference Guide.

Warning
In order for the Run option to reflect the correct procedure name in the Run menu,
the .pro filename must be the same as the main procedure name. For example, the
file named squish.pro must include:

pro squish

Resolve Dependencies

Select this option to iteratively compile all un-compiled IDL routines that are
referenced in any open and compiled files. Selecting this option is the same as
entering RESOLVE_ALL, /QUIET at the Command Input Line. The QUIET keyword
suppresses informational messages. See RESOLVE_ALL in the IDL Reference
Guide for a more detailed explanation.

Profile

Select this option to access the Profile dialog. The IDL Code Profiler allows you to
analyze the performance of your applications. You can identify which modules are
used most frequently, and which modules take up the greatest amount of time.For
more information about the IDL Code Profiler, see “The IDL Code Profiler” in
Chapter 14 of Building IDL Applications.
The Menu Items Using IDL

Chapter 3: The IDL for Windows Interface 77
Test GUI [CTRL+T]

Select this option to test the GUI interface in a GUIBuilder window. This option
allows you to see how the interface you have designed will look when it is running.

To exit test mode:

Press the Esc key.

or

Click the X in the upper-right corner of the application window of the
running test application.

Note
This option is not available if a blocking widget is currently active.

Break [CTRL+BREAK]

Select this option to interrupt program execution. IDL inserts a marker to the left of
the line at which program execution was interrupted.

Stop [CTRL+R]

Select this option to stop program execution and return to the main program level.
Selecting this item is the same as entering the following at the Command Input
Line:

RETALL
WIDGET_CONTROL,/RESET
CLOSE, /ALL
HEAP_GC, /VERBOSE

See RETALL, WIDGET_CONTROL, CLOSE, or HEAP_GC in the IDL Reference
Guide for more detailed explanations.

Reset

Select this option to completely reset the IDL environment. This option executes
.RESET_SESSION. See the IDL Reference Guide for more information.

Step Into [F8]

Select this option to execute a single statement in the current program. The current-
line indicator advances one statement. If the statement being stepped into calls
another IDL procedure or function, statements from that procedure or function are
executed in order by successive Step commands. Selecting this item is the same as
Using IDL The Menu Items

78 Chapter 3: The IDL for Windows Interface
entering .STEP at the IDL Command Input Line. See .STEP in the IDL Reference
Guide for a more detailed explanation.

Step Over [F10]

Select this option to execute a single statement in the current program. The current-
line indicator advances one statement. If the statement which is stepped over calls
another IDL procedure or function, statements from that procedure or function are
executed to the end without interactive capability. Selecting this item is the same as
entering .STEPOVER at the IDL Command Input Line. See .STEPOVER in the IDL
Reference Guide for a more detailed explanation.

Step Out [CTRL+F8]

Select this option to continue processing until the current program returns. Selecting
this item is the same as entering .OUT at the IDL Command Input Line. See .OUT in
the IDL Reference Guide for a more detailed explanation.

Trace...

Select this option to access the Trace Execution dialog. You can modify the interval
between successive .STEP or .STEPOVER commands, depending on whether Step
into routines or Step over routines is checked. The current-line indicator points to
program lines as they are executed. Selecting this item at full speed is the same as
entering .TRACE at the IDL command prompt. See .TRACE in the IDL Reference
Guide for a more detailed explanation.

Run to Cursor [F7]

Select this option to execute statements in the current program up to the line where
the cursor is positioned. Selecting this item is the same as setting a one-time
breakpoint at a specific line. See BREAKPOINT in the IDL Reference Guide for a
more detailed explanation.

Run to Return [CTRL+F7]

Select this option to execute statements in the current procedure or function up to the
line where the return is positioned. Selecting this item is the same as setting a one-
time breakpoint at a specific line. See .RETURN in the IDL Reference Guide for a
more detailed explanation.

Set Breakpoint [F9]

Select this option to set a breakpoint on the current line.

See Chapter 18, “Debugging an IDL Program” in Building IDL Applications for a
more detailed explanation.
The Menu Items Using IDL

Chapter 3: The IDL for Windows Interface 79
Disable Breakpoint

Select this option to access disable a breakpoint in the current line.

See Chapter 18, “Debugging an IDL Program” in Building IDL Applications for a
more detailed explanation.

Edit Breakpoint...

Select this option to access the Edit Breakpoint dialog.

See Chapter 18, “Debugging an IDL Program” in Building IDL Applications for a
more detailed explanation.

Up Stack [CTRL+Up]

Select this option to move up the call stack by one.

Down Stack [CTRL+Down]

Select this option to move down the call stack by one.

List Call Stack

Select this option to display the current nesting of procedures and functions.
Selecting this item is the same as entering HELP, /TRACEBACK at the IDL Command
Input Line. See HELP in the IDL Reference Guide for a more detailed explanation.

Project Menu

For more information on the following menu items, see Chapter 13, “Creating IDL
Projects” in Building IDL Applications.

Add/Remove Files...

Select this option to add or remove files from the current project.

Groups...

Selecting this option displays the Project Groups dialog from which you can create
a new group or rename, remove, move up or down, or set to filter specific file types
for the default groups within an IDL Project.

Options...

Select this option to change the options for a project. The Project Options dialog is
displayed.
Using IDL The Menu Items

80 Chapter 3: The IDL for Windows Interface
Compile

Select this option to compile files in a project. You can choose either All Files to
compile all the source files in a project or Modified Files to compile only the files
that have been modified since the last compile.

Build

Select this option to build your project.

Run

Select this option to run the application defined by your project.

Export

Select this option to export your project.

Macros Menu

Edit...

Select this item to access the Edit Macros dialog. Macros which have already been
defined are listed in the Macros: field. To edit a macro, click on the macro to access
its characteristics and click OK when your adjustments are complete.

To add a macro, click Add..., which will access the Add Macro dialog. Enter the
name of the new macro in the given field and click OK. Enter the IDL command to
be executed by the new macro in the IDL Command: field. Enter the menu item
name, the full path to the toolbar bitmap file, the tooltip text, and the status bar text in
the appropriate fields. Select the accelerator by specifying the key in the Key: field
and then optionally clicking on any combination of Ctrl, Alt and Shift.

Note
Bitmap files for toolbar buttons must be 16 pixels by 16 pixels, and must contain
256 colors or fewer.

To remove a macro, click Remove. To change the position of a macro in the Macro
menu and on the Macro Toolbar, click on the macro to highlight it and click on
either Move Up or Move Down.

Import...

Use this menu selection to display the Import Macros dialog box. Use this dialog to
select the previous IDL installation from which you want macros to be imported.
The Menu Items Using IDL

Chapter 3: The IDL for Windows Interface 81
Print Var

Select this option to print the selected variable. Selecting this item is the same as
entering PRINT, x at the IDL Command Input Line, where x is the selected variable.

Help On Var

Select this option to list attributes of the selected variable. Selecting this item is the
same as entering HELP, x, /STRUCTURE at the IDL Command Input Line, where x is
the selected variable.

Import Image

Select this option to import an image file into IDL. For more information, see “Using
Macros to Import Image Files” on page 193.

Import ASCII

Select this option to import an ASCII file into IDL. For more information, see “Using
Macros to Import ASCII Files” on page 197.

Import Binary

Select this option to import a binary file into IDL. For more information, see “Using
Macros to Import Binary Files” on page 203.

Import HDF

Select this option to import an HDF file into IDL. For more information, see “Using
Macros to Import HDF Files” on page 210.

Demo

Select this option to access IDL’s Demo application.

Window Menu

Next [F6]

Select this option to shift IDL’s focus to the next numbered editor window.

Previous [SHIFT+F6]

Select this option to shift IDL’s focus to the previous numbered editor window.

Cascade

Select this option to cascade all the IDL Editor windows within the main window.
Using IDL The Menu Items

82 Chapter 3: The IDL for Windows Interface
Tile Horizontally

Select this option to tile all the IDL Editor windows on top of one another within the
main window.

Tile Vertically

Select this option to tile all the IDL Editor windows side-by-side within the main
window.

Arrange Icons

Select this option to arrange all minimized Editor or Graphics windows.

Close All

Select this option to close all IDL Editor windows. If the text within an IDL Editor
window has changed, you are asked if you want to save the file before closing.

Command Input [CTRL+I]

If this menu item has a check mark by it, the IDL Command Input Line is visible in
the main IDL window. If this item does not have a check mark next to it, the IDL
command input line is not visible. Click on this menu item to toggle between the two
states.

Output Log [CTRL+L]

If this menu item has a check mark by it, the Output Log is visible in the main IDL
window. If this item does not have a check mark next to it, the Multiple Document
Panel is maximized in the main IDL window. Click on this menu item to toggle
between the two states.

Variable Watch [CTRL+A]

If this menu item has a check mark by it, the Variable Watch Window is visible in
the main IDL window. If this item does not have a check mark net to it, the Variable
Watch Window is not visible. Click on this menu item to toggle between the two
states.

Project

If this menu item has a check mark by it, the Project Window is visible in the main
IDL window. If this item does not have a check mark net to it, the Project Window
is not visible. Click on this menu item to toggle between the two states.
The Menu Items Using IDL

Chapter 3: The IDL for Windows Interface 83
Toolbars

Select this option to access a pulldown menu with the three Windows toolbars:
Standard, Run & Debug, and Macros. If a toolbar has a check mark by it, it is
visible below the Menu bar items.

Status Bar

If this menu item has a check mark by it, the Status bar is visible at the very bottom
of the Main IDL window.

Numbered Windows

The numbered menu items at the bottom of the Window menu display open files.
Select any of these menu items to make that window the current window.

Help Menu

Contents...[CTRL+F1]

Select this menu item to display the IDL Online Help Viewer.

Find Topic... [F1]

Select this menu item to display the Search dialog for IDL Online Help.

Help on the IDL Dev Env...

Select this menu item to display this chapter of Using IDL.

Help on the IDL Language...

Select this menu item to display information on the IDL language.

Help on Help...

Select this menu item to learn about how to use Help.

About IDL...

Select this option to display information on the IDL version in use.
Using IDL The Menu Items

84 Chapter 3: The IDL for Windows Interface
Keyboard Shortcuts

Most of the menu options can be accessed from the keyboard instead of clicking on
the menus. The following table lists all of the available keyboard equivalents. Note
that these equivalents are also shown to the right of each menu item in the menus
themselves.

Keyboard
Shortcut Function

Ctrl+A Toggle Variable Watch Window

Ctrl+C Copy selection to clipboard

Ctrl+D Go to definition

Ctrl+E Find highlighted selection

Ctrl+F Start Find dialog

Ctrl+G Start Go To Line dialog

Ctrl+H Start Replace dialog

Ctrl+I Toggle Command Input Line

Ctrl+L Toggle Output Log

Ctrl+N Open new file

Ctrl+O Open file

Ctrl+P Print currently-active file

Ctrl+Q Exit IDL

Ctrl+R Stop the IDL environment

Ctrl+S Save currently-active file

Ctrl+V Paste selection from clipboard at
insertion point

Ctrl+X Cut selection to clipboard

Ctrl+Y Redo last undo

Ctrl+Z Undo previous editing action

Table 3-2: Keyboard Shortcuts, Windows IDLDE
Keyboard Shortcuts Using IDL

Chapter 3: The IDL for Windows Interface 85
Ctrl+Break Interrupt execution

Ctrl+Del Clear current Editor window

Ctrl+F1 Start Contents of Online Help

Ctrl+F5 Compile currently-selected file

Ctrl+F7 Execute file to return

Ctrl+F8 Continue processing until program
returns: .OUT

Ctrl+Up arrow Move up call stack

Ctrl+Down arrow Move down call stack

Delete Delete selection

F1 Start Find Topic in Online Help

F3 Repeat last Find entry

F5 Run / Continue stopped program:
.CONTINUE

F6‘ Display next-numbered Editor window

F7 Execute file to cursor

F8 Execute a single statement: .STEP

F9 Toggle breakpoint

F10 Execute a single statement:
.STEPOVER

Shift+F3 Repeat last Replace entry

Shift+F5 Execute currently-selected file

Shift+F6 Display previously-numbered Editor
window

Keyboard
Shortcut Function

Table 3-2: Keyboard Shortcuts, Windows IDLDE
Using IDL Keyboard Shortcuts

86 Chapter 3: The IDL for Windows Interface
Customizing IDL

Various defaults for IDL can be customized using the IDL Preferences dialog box.
Select Preferences from the IDL File menu to display a cascading list of preferences.
The IDLDE Preferences dialog box contains seven tab selections with which you
can customize your interaction with the IDLDE environment. The seven categories
are: General, Layout, Graphics, Editor, Startup, Fonts, and Path.

Click Reset to restore the settings to the values from the start of the current IDL
session.

General Preferences

The General tab in the Preferences dialog box allows you to specify how the IDLDE
begins and ends, to control the number of lines in the recall buffer and the Output
Log, and to designate how the files should be opened and read.

Program

You can specify how IDL handles starting up and exiting. Click on the following
checkboxes to apply or disable the options:

• Show Splash Screen — Select this option to show IDL’s splash screen on
startup.

• Save Settings on Exit — Select this option to save all the preferences settings
from the current IDL session to be applied to future IDL sessions.

• Confirm Exit

• Users share preferences and macros — Only someone with administrator
rights can toggle this preference. If this checkbox is selected, all users are able
to use and edit the same set of preferences and macros. If a user changes a
preference or macro, it will change for all users. If this checkbox is not
checked, each user has his own set, and will not be able to affect other users’
preferences and macros. If this checkbox is grayed out, the current user does
not have administrator rights.
Customizing IDL Using IDL

Chapter 3: The IDL for Windows Interface 87
Log and Command Windows

The performance of IDL can depend upon the number of saved lines. The amount of
memory required for greater numbers of saved lines can affect the speed at which
IDL runs. Click in the field next to each description and enter your adjusted value.

• Number of lines saved in the recall

This field controls the maximum number of lines saved in the recall buffer.
There are three ways to access the contents of the recall buffer, all of which are
limited by this field. After locating the cursor in the Command Input Line, you
can press your up arrow key to scroll through your last entries.You can also
enter HELP, /RECALL in the Command Input Line or click on your right mouse

Figure 3-2: General Preferences Dialog
Using IDL Customizing IDL

88 Chapter 3: The IDL for Windows Interface
button while positioned over the Command Input Line to display your entries
up to the limit specified by the recall buffer. The default is 20.

• Number of lines to display in the log

This field controls the minimum number of lines retained by the Output Log
window. The default is 1000 lines.

• Number of log lines to delete at limit

This field controls the number of lines to delete at a time until the limit is
reached again. The default is 100.

Files

You can change the way in which IDL handles opening files. Click on the following
checkboxes to apply or disable the options:

• Change Directory on Open

Select this checkbox to change the working directory upon opening a file to the
opened file’s directory.

• Open Files Read Only

• Clip long filenames

Select this checkbox to truncate filenames so that they conform to the
Windows 8.3 filename format. By default, a file is opened without changing
the filename. See !WARN in the IDL Reference Guide for more information.

Layout Preferences

Main window

By default the size of the window is 1/4 of the screen size (i.e., 1/2 the screen width
and 1/2 the screen height). The window is positioned such that the lower-left corner
of the window is at the lower-left corner of the screen. Click on Default Layout to
use these settings.

To change the layout, click on Specify Layout, which allows you to adjust the
positioning of the window with the Left and Top fields and to adjust the size of the
window with the Width and Height fields.

• Left

The horizontal location of the upper-left corner of the main IDL window (in
pixels) relative to the left side of the screen. The default is 0.
Customizing IDL Using IDL

Chapter 3: The IDL for Windows Interface 89
• Top

The vertical location of the upper-left corner of the main IDL window (in
pixels) relative to the top of the screen. The default is 1/2 the screen height.

• Width

The width of the main IDL window in pixels. The default is 1/2 the screen
width. The value in this entry reflects the current width of the main IDL
window.

• Height

The height of the main IDL window in pixels. The default is 1/2 the screen
height. The value in this entry reflects the current height of the main IDL
window.

Click on Remember Layout to apply the settings to future IDL sessions.

Show Window

By default, all the listed options are checked, signifying that they are all visible in the
IDLDE main window. Click on the checkboxes to show or hide the sections.

For more information about the above window sections, see “The Main IDL
Window” on page 64.

Figure 3-3: Layout Preferences Dialog
Using IDL Customizing IDL

90 Chapter 3: The IDL for Windows Interface
Graphics Preferences

This tab allows you to control the layout and size of the open Graphics windows in
the Main Document Panel and also to control the backing store applied to all
Graphics windows.

Window layout

All open Graphics windows can be arranged in either a tiled or cascading fashion.

• Tile

The Tile option arranges all Graphics windows on the desktop side-by-side,
without any overlap.

• Cascade

The Cascade option arranges all Graphics windows on the desktop so that they
overlap.

• Width

This field specifies the width of IDL graphics windows, in pixels. The default
is 1/2 of the total screen width.

• Height

This field specifies the height of IDL graphics windows, in pixels. The default
is 1/2 of the total screen height.

• Use 1/4 the screen size

Click this check box to use the default Height and Width values of 1/2 of the
height and 1/2 of the width of your display.

• Always On Top

Click this check box to specify that graphics windows created in IDL remain
on top of the IDLDE window. If the check box is deselected, the graphics
windows are hidden behind the IDLDE window when it has the focus.
Customizing IDL Using IDL

Chapter 3: The IDL for Windows Interface 91
Backing Store

When backing store is enabled, a copy of each Graphics window is kept in memory.
The copy of the window is used to refresh the window when it has been covered and
uncovered. IDL’s performance increases for no backing store, since the amount of
memory required to save files can affect the speed at which IDL will run.

See “Backing Store” in Appendix B of the IDL Reference Guide for more
information.

• None (direct-draw), RETAIN = 0

This option does not keep a copy of the window, allowing the highest
performance in terms of speed.

• System buffered, RETAIN = 1

This option requests the backing store from the Windows server. This option is
the default.

• Bitmap buffered, RETAIN = 2

This option specifies to have IDL maintain the backing store.

Figure 3-4: Graphics Preferences Dialog
Using IDL Customizing IDL

92 Chapter 3: The IDL for Windows Interface
True Type Fonts

Enter the number of TrueType characters for which to save triangulation information.
Saving the triangulation information for TrueType characters means that IDL will not
have to calculate the polygons to draw the next time a character of the same font and
size is rendered. Larger values will use more memory but can increase drawing speed
if multiple fonts are used. The default is 256.

Default object graphics renderer

• Hardware (Open GL)

• Software

See “Window Objects” in Chapter 28 for information about the differences between
the two rendering systems.

Editor Preferences

This tab allows you to control the appearance and performance of the built-in IDL
Editor, and also to set the way in which IDL compiles files.

For more information, see “Using the IDL Editor” in Chapter 9 of Building IDL
Applications.

Figure 3-5: Editor Preferences Dialog
Customizing IDL Using IDL

Chapter 3: The IDL for Windows Interface 93
Startup Preferences

This tab allows you to control the location of the main IDL directory and any startup
file to be run.

IDL Main Directory

This field shows where the main IDL directory is located. The default is the location
you specified when you installed IDL. There is no reason to change this entry. The
location of the home IDL directory is shown primarily for informational purposes.
Click Browse next to the Home directory: field to access the Select Directory
dialog.

Working Directory

This field allows you to set the initial working directory for future IDL sessions. The
General Preferences tab contains an option, described in “Change Directory on
Open” on page 88, which also affects the Working Directory.

Startup file

Use this field to specify the name of an IDL batch file to be executed automatically
each time IDL is run. The startup file specifies the startup path for the next session of
the IDLDE. Your entries are appended to the system variable !PATH. Click Browse
next to the Startup file: field to access the Select File dialog.

For example, to execute the commands in a batch file named MYBATCH.PRO,
located in the C:\DATA directory, use:

C:\DATA\MYBATCH.PRO

Note
Startup files are executed one statement at a time. It is not possible to define
program modules (procedures, functions, or main-level programs) in the startup
file.

See “Startup File” in Chapter 2 for more information.
Using IDL Customizing IDL

94 Chapter 3: The IDL for Windows Interface
Figure 3-6: Startup Preferences Dialog
Customizing IDL Using IDL

Chapter 3: The IDL for Windows Interface 95
Fonts Preferences

This tab allows you to specify individual font descriptions for the Editor window, the
Command Input Line and the Output Log.

Path Preferences

This tab allows you to control where IDL looks for procedures, functions, and help
files.

Search Path

This field tells IDL where to look for procedures and functions. The search path
specifies a list of directories to search.

• Subdirectory checkboxes

To specify a directory tree that includes all of that directory’s subdirectories,
add a check to the box in front of the entry. Clicking on a checked box, thereby
un-checking it, specifies that the subdirectories of the directory will not be
searched.

Figure 3-7: Font Preferences Dialog
Using IDL Customizing IDL

96 Chapter 3: The IDL for Windows Interface
• Add

To add a path to the Search Path, click on Add to start the Select Directory
dialog. The new path is inserted before a selected path. If none of the paths are
selected, the new path is appended to the end of the list.

• Remove

Click on Remove to delete the selected path.

• Expand

Click on Expand to list a selected path’s subdirectories directly beneath the
path. The expanded path is then un-selected and any newly listed
subdirectories are selected so you can cancel the expansion by immediately
clicking “Remove”. The initial path and any expanded subdirectories are
automatically unchecked to prevent subdirectory searching.

• Move Up and Move Down

You can move the selected path up or down through the list by clicking on
Move Up or Move Down. You can scroll through the list by pressing the up
and down arrows on your keyboard after selecting one of the paths.

The default path is the IDL directory and all of its subdirectories. See
“Executing Program Files” in Chapter 2 for more information.
Customizing IDL Using IDL

Chapter 3: The IDL for Windows Interface 97
Message-of-the-Day File

A message-of-the-day file can be used to display the contents of an ASCII text file
each time IDL is run. To create a message-of the-day file for IDL for Windows,
simply name the desired text file MOTD.TXT or WIN32.TXT and place it in the MOTD
subdirectory of the HELP subdirectory of the main IDL directory.

Note
The MOTD file is simply an ASCII text file—not an IDL program or batch file. To
execute a series of IDL commands, select a startup file as described in “Startup
File” in Chapter 2.

If you don’t wish to see the message-of-the-day file each time you start IDL, simply
remove or rename the WIN32.TXT or MOTD.TXT file.

Figure 3-8: Path Preferences Dialog
Using IDL Customizing IDL

98 Chapter 3: The IDL for Windows Interface
Windows IDL Differences

The Windows version of IDL implements most of the functionality of other versions.
There are a number of differences, however, as described below.

A Note about Microsoft Windows Displays

We recommend that you use a graphics driver that provides at least 800 by 600 pixel
resolution with 256 colors. This mode is supported by most VGA (Video Graphics
Array) cards that have 512K of memory. VGA cards with 1 Megabyte of memory
support 1024 by 768 pixel resolution with 256 colors.

Note
EGA (Enhanced Graphics Adapter) cards provide only 16 colors no matter what
resolution they support.

Getting Information About Your Graphics Device

Under Windows 95 and Windows NT 4.0, click on
My Computer–>Control Panel–>Display–>Settings and click the Device Type
button to access the device information.

Using a Two-Button Mouse with IDL

IDL supports the use of mice with up to three buttons. However, many mice used
with Microsoft Windows systems have only two buttons. Control+left mouse
button simulates a middle mouse-button press.

File Manipulation

Filenames

Under Windows 95/98 and Windows NT, long filenames are supported by IDL.
Names can be up to 255 characters long including extensions. Names can contain any
uppercase or lowercase characters (including spaces) except those shown above.
Windows 95/98 and Windows NT preserve the case of filenames, but the names are
not case sensitive (that is, FileName is the same as filename).

While the names of IDL Library files have been truncated to 8 characters, the names
of the actual routines remain unchanged.
Windows IDL Differences Using IDL

Chapter 3: The IDL for Windows Interface 99
Save/Restore Files

SAVE/RESTORE files generated with the Windows version of IDL are saved in the
XDR format. This format allows data files saved under UNIX, VMS, Windows, and
MacOS systems to be easily exchanged.

Positioning File Pointers

Under Windows, the current file pointer can be positioned arbitrarily. Moving the file
pointer to a position beyond the current end-of-file causes the file to grow out to that
point. Under Windows, the file is padded with arbitrary data.

Running IDL with Fewer than 256 Colors

We recommend that you use a graphics card and driver that support high-resolution
and 256 colors. Support for fewer than 256 colors is provided mostly for portable
computers. Portables often have LCD displays that can display only between 16 and
64 shades of gray.

If your graphics card and Windows driver support fewer than 256 colors, IDL will
run but the results may not be acceptable.

The Windows Palette

Windows reserves the first 20 colors out of all the available colors for its own use.
These colors are the ones used for title bars, window frames, window backgrounds,
scroll bars, etc. If your graphics driver supports fewer than 20 colors, any windows
application that you run, including IDL, must use those reserved colors. This type of
color map is called a static color map. IDL can still display graphics, but when it
requests a color, Windows supplies the closest available system color. Often, this
color choice is not very close to the one you want.

If your driver supports more than 20 colors, the quality of graphics output from IDL
improves. Any colors beyond the 20 that Windows needs to reserve can be
customized by IDL to be the exact color requested. If you have a 256 color driver,
IDL has (by default) 236 colors to work with.

You can display the Windows system colors by opening My Computer –>
Control Panel –> Display –> Settings and click the Color Palette dropdown list.
For Win95 and NT 4.0, click on the Appearance tab and select the Color dropdown
list to show the 20 colors reserved by Windows.
Using IDL Windows IDL Differences

100 Chapter 3: The IDL for Windows Interface
Windows IDL Differences Using IDL

Chapter 4:

The IDL for Motif
Interface

The following topics are covered in this chapter:
The Main IDL Window 103
IDLDE Windows . 106
The Menu Items . 107
Keyboard Shortcuts 121
Using Preferences to Customize IDLDE . 123
Using Resources to Customize IDL 135

Command Line Options 137
Modifying the Control Panel 142
Action Routines . 145
Modifying the Macros Menu 152
CDE File Manager Support 153
Using IDL 101

102 Chapter 4: The IDL for Motif Interface
IDL for UNIX and VMS platforms can be used with one of two different interfaces.
Starting IDL with the command idl begins a traditional IDL session using a simple tty
(text) command line interface. If you are running the X Window system, however,
IDL can also be started with the command idlde (or idl/de under VMS), which invokes
a convenient multiple-document interface called the IDL Development Environment
(IDLDE). This chapter describes the IDLDE.

See “Starting IDL” on page 24 and “Environment Variables Used by IDL” on
page 30 for details on running IDL with its command-line interface.
Using IDL

Chapter 4: The IDL for Motif Interface 103
The Main IDL Window

When you start IDL, the main IDL window appears (shown in the figure below). The
components of this window are described below.

Menu Bar

The menu bar, located at the top of the main IDLDE window, is used to control
various IDLDE features.

Tool Bars

You can choose any combination of three tool bars: Standard, Run & Debug, and
Macros. To change the toolbars displayed, use the Window menu to access the
Toolbar pulldown menu and select or de-select any combination of the three

Figure 4-1: The Main IDL Window

Menu Bar

Tool Bars

Project
Window

Multiple
Document
Window

Output Log

Variable Watch
Window

Command Input
Line

Status Bar

Control Panel
Buttons
Using IDL The Main IDL Window

104 Chapter 4: The IDL for Motif Interface
toolbars. In addition, when you open a GUIBuilder window, its associated toolbar is
displayed.

When you position the mouse pointer over a Toolbar button, the Status Bar displays
a brief description. If you click on a Toolbar button which represents an IDL
command, the IDL command issued is displayed in the Output Log.

Control Panel Buttons

The Control Panel buttons issue IDL commands for the currently-selected Editor
window when pressed. The IDL command issued is displayed in the Output Log. By
default, there are three different toolbars; see “Tool Bar” on page 120 for more
information. The buttons displayed as well as the commands they issue are
completely configurable (see “Modifying the Control Panel” on page 142). When
you position the mouse pointer over a Control Panel Button, the Status Bar
displays a brief description. The Control Panel Buttons can be made invisible by
selecting Window–>Configure–>Hide Control.

Project Window

IDL Project Window allows you to manage, compile, run, and create distributions of
all the files needed to develop an IDL application. All of your application files can be
organized for ease of access, and to be easier to export to other developers,
colleagues, or users. The Project Window can be made invisible by selecting
Window–>Configure–>Hide Project. For further information on the Projects
Window, refer to Building IDL Applications.

Multiple Document Window

The top-right section of the main IDL window is where one or more IDL Editor
windows are displayed. The Multiple Document Window can be made invisible by
selecting Window–>Configure–>Hide View.

Output Log

Output from IDL is displayed in the Output Log window, which appears by default
when IDLDE is first started. The Output Log area can be sized by moving the sash
located above the Output Log scroll bar and can be made invisible (as can the
Command Input Line) by selecting Window–>Configure–>Hide Log. If you click
the right mouse button while positioned over the Output Log, a popup menu appears
allowing you to move to a specified error or clear the contents of the Output Log.
The Main IDL Window Using IDL

Chapter 4: The IDL for Motif Interface 105
Variable Watch Window

The Variable Watch Window appears by default when you start the IDLDE. It
keeps track of variables as they appear and change during program execution. The
Variable Watch Window can be made invisible by selecting Window–
>Configure–>Hide Variable Watch. For more information about the Variable
Watch Window, see “The Variable Watch Window” in Chapter 18 of Building IDL
Applications.

Command Input Line

The Command Input Line is a single IDL prompt where you can enter IDL
commands. The text output by IDL commands is displayed in the Output Log
window. The Command Input Line can be made invisible by selecting
Window–>Configure–>Hide Command.

If you click the right mouse button while positioned over the Command Input Line,
a popup menu appears displaying the command history, with a maximum buffer of 20
entries. You can specify the number of lines in the recall buffer with the General
Preferences tab from the File menu. If you enter HELP, /RECALL_COMMANDS at
the Command Input Line, you will see the same results, except that the number of
saved lines are changed by specifying the environment variable !EDIT_INPUT in the
IDL startup file.

You can also open and compile files from the Command Input Line. See “Open
[Ctrl+O]” on page 107 and “Compile filename.pro [Ctrl+F5]” on page 113 for more
information.

Status Bar

When you position the mouse pointer over a Control Panel button or select an
option from a menu item in IDLDE, the Status Bar displays a brief description. The
Status Bar can be made invisible by selecting Window–>Configure–>Hide Status.
Using IDL The Main IDL Window

106 Chapter 4: The IDL for Motif Interface
IDLDE Windows

Two types of windows can be created and manipulated with IDLDE: IDL Editor, and
IDL Graphics windows.

IDL Editor Windows

IDL Editor windows allow you to write and edit IDL programs (and other text files)
from within IDL. Any number of Editor windows can exist simultaneously. No
Editor windows are open when IDL is first started. Editor windows can be created by
selecting File–>New or File–>Open.

The Multiple Windows/Single Window toggle option under the Window menu
allows you to either display one file at a time inside the IDLDE main window, or to
work with multiple Editor windows outside the main window. See “Using the IDL
Editor” in Chapter 9 of Building IDL Applications for more information on the IDL
Editor.

If you click the right mouse button while positioned over an editor window, a popup
menu appears allowing you to quickly access several of the most convenient
commands. The popup menu changes to display common debugging commands if
IDL is running a program.

If a program error or breakpoint is encountered, IDLDE displays the relevant file,
opening it if necessary. The line at which the breakpoint or error occurred is marked.
See Chapter 18, “Debugging an IDL Program” in Building IDL Applications for
more on IDL’s debugging commands.

IDL Graphics Windows

IDL Graphics windows appear when you use IDL to plot or display data.

When an IDL Graphics window is minimized (iconized), the icon for that window
consists of the X motif icon titled with the name of the IDL window iconized. This
icon appears on the desktop, not in the Multiple Document Panel.

Warning
If a window is iconized, it will not be refreshed upon return if system or IDL
backing store is not enabled.
IDLDE Windows Using IDL

Chapter 4: The IDL for Motif Interface 107
The Menu Items

Seven menus (File, Edit, Search, Run, Macros, Window, and Help) allow you to
control the operation of the IDLDE. These menus are described below. You can
cause each menu to float on the desktop by clicking on the dotted line at the top of
each menu listing. Each menu becomes a tear-off.

Keyboard accelerators are shown in square brackets.

File Menu

New [CTRL+N]

Select this option to create a new, empty IDL Editor window. Each window is titled
Untitled until saved. This option is also accessible by clicking the New Document
button from the Toolbar (first button).

Open [CTRL+O]

Select this option to open a text file for editing. The Open dialog appears. Use the
filter to search a specific directory. To open a file, either double-click on the file you
want to open or type the file name in the Selection field and click OK. If the
Multiple Windows option is in effect, a new IDL Editor window is created outside
the main window to contain each text file. If the Single Window option is in effect,
the new file is displayed and all others are listed in the Window menu.

You can also open files from the Command Input Line. Enter the following at the
IDL prompt:

.EDIT file1 [file2 ... filen]

where file is the name of the file you want to open. If the path is not specified in the
Paths Preference from the File menu, you must enter the full path for file. See
.EDIT in the IDL Reference Guide for more information.

Close

Select this option to close the currently-selected IDL Editor window. If you have
made changes in an IDL Editor window, you are asked if you want to save the
changes before closing the window.

Open Project...

Select this option to open a new IDL Project. The Open dialog appears. Select the
project you want to open and click Open.
Using IDL The Menu Items

108 Chapter 4: The IDL for Motif Interface
Save Project

Select this option to save the current IDL Project. If the Project has not yet been
saved, you are prompted for a filename with the Save As dialog.

Save Project As...

Select this option to save the current IDL Project to a specified filename. The Save
As dialog appears.

Close Project

Select this option to close the current IDL Project. If you have made changes in to the
project, you are asked if you want to save the changes before closing the window.

Save [CTRL+S]

Select this option to save the contents of an IDL Editor window. If the file has not yet
been saved, you are prompted for a filename with the Save As dialog.

Note
Changes made to a previously-compiled routine are not available to IDL until that
routine is re-compiled. Executing the routine without saving and re-compiling
simply re-runs the previously-compiled version, without incorporating recent
changes.
Select Run–>Compile to return to the main program level and re-compile the
routine. Select Run–>Compile from Memory to compile the last-saved version of
the file without saving or implementing recent changes.

Save As... [CTRL+W]

Select this option to save the contents of an IDL Editor window to a specified
filename. The Save As file selection dialog box appears.

Revert to Saved

Select this option to reload the last saved version of the document.

Warning
Unsaved changes are lost without warning.

Print... [CTRL+P]

Select this option to print the contents of the currently-selected window to the
currently-active printer. The Print dialog appears.
The Menu Items Using IDL

Chapter 4: The IDL for Motif Interface 109
Print Setup

Select this option to change the printer and printing options. The Printer Setup dialog
appears. For further information on Printer Setup, see “Setting Up a Printer in IDL”
on page 40.

Recent Files

Select this option to view or open recently opened or created files. This menu item
lists the last ten opened or created files. To open a file on this list, select it.

To change the maximum number of files displayed from ten to another number,
modify the idlde.numRecentFiles resource in your resource file called .idlde, which is
located in your home directory.

Recent Projects

Select this option to view or open recently opened project files.

Preferences

Select this option to display a dialog box containing five tab selections with which
you can customize your interaction with the IDLDE environment.

Tab Description

General This tab allows you to set the look of the IDLDE interface.

Layout This tab allows you to specify the location and size of the
main window on the screen. You can also designate the
appearance of the IDLDE’s components.

Graphics This tab allows you to specify graphics window dimensions
and also to select how to handle IDL’s backing store.

Edit This tab allows you to specify how to compile files in IDL.

Startup This tab allows you to specify IDL’s main directory, working
directory, and the startup file. The startup file specifies the
startup path of IDLDE for the next session. It is also possible
to disable the use of the startup file.

Fonts This tab allows you to specify the fonts used in document
windows.
Using IDL The Menu Items

110 Chapter 4: The IDL for Motif Interface
Exit [CTRL+Q]

Select this option to exit IDLDE. All IDL Editor windows are closed before exiting.
If text in an Editor window has changed, you are asked if you want to save it before
exiting.

Edit Menu

Undo [ALT+Z]

Select this option to undo previous editing actions. Multiple undo operations are
supported; the first reverses the most recent operation, the next reverses the second
most recent operation, etc. If the most recent action is irreversible, this option will not
be accessible.

Redo [ALT+Y]

Select this option to redo previously undone editing actions. Multiple redo operations
are supported; the first reverses the most recent undo, etc.

Cut [ALT+X]

Select this option to remove currently-selected text from an IDL Editor window to
the Motif clipboard.

Copy [ALT+C]

Select this option to copy currently-selected text from an IDL Editor window to the
Motif clipboard.

Paste [ALT+V]

Select this option to paste the contents of the Motif clipboard at the current insertion
point. The insertion point can only be placed in an IDL Editor window.

Delete [DEL]

Select this option to delete the currently-selected text. The deleted text is not placed
on the clipboard.

Paths This tab allows you to specify the IDL Files Search Path.
Your entries are appended to the system variable !PATH.

Tab Description

Table 4-1: Preference Dialog Tabs
The Menu Items Using IDL

Chapter 4: The IDL for Motif Interface 111
Select All

Use this option to select all of the text in an IDL Editor window. The entire contents
of the window are highlighted.

Clear All

Use this option to erase all of the contents in the current IDL Editor window.

Clear Log [CTRL+Y]

Use this option to erase the contents of the Output Log window.

Search Menu

Find... [ALT+F]

Select this option to find text in the currently-active IDL Editor window. The
Find/Replace dialog appears. The attributes available for the Find dialog are
described below:

• Find: — Enter text to search for in this field.

• Case Sensitive or Non-sensitive — Specify if the search should reflect the
case of the text entered in the Find field.

• Search Forward or Backward — Specify the direction in which you would
like to begin the search.

• Start at: Top, Current or Bottom — Specify where to begin the search. For
Top and Bottom, the Search automatically moves Forward or Backward,
respectively. After a word is found, the Search begins at Current.

• Whole words only: — Select this check box so that the search applies only to
the entire designated word, instead of finding the word within other words as a
sub-string.

• Files: — You can specify an open file in which to search or that all open files
be searched. By default, the search will take place in the currently-selected
window. You can also create a Tear-off from the pulldown menu (click on the
dashed line at the top), which remains open as long as the Find/Replace dialog
is open.

To replace text, use the Replace dialog [Alt+R].

Find Again [ALT+G]

Select this option to repeat the most recent text search.
Using IDL The Menu Items

112 Chapter 4: The IDL for Motif Interface
Find Selection [ALT+I]

Select this option to find the next occurrence of the currently selected text.

Enter Selection [ALT+T]

Select this option to enter selected text in the Find field of the Find/Replace dialog.

Replace... [ALT+R]

Select this option to find text in an IDL Editor window and replace it with new text.
The Find/Replace dialog appears. See “Find... [Alt+F]” on page 111 for a
description of most of the attributes for the Replace dialog; the differing attributes
available for the Replace dialog are described below:

• Replace: — To replace an occurrence of the text specified in the Find field,
enter the replacement text in this field. Click Replace to change the found text.
Click Replace & Find to change the found text and find the next occurrence of
the text specified. You can only click Replace or Replace & Find if a word
has been found, i.e. if it is highlighted in the relevant Editor window.

• Replace all: — Click this check box to specify that all occurrences of the word
in the Find field be replaced by the word in the Replace field. Click Replace
to change all the words in the specified file(s).

Replace & Find [ALT+P]

Select this option to repeat the most recent search-and-replace operation.

Go To Line [CTRL+G]

Use this option to jump directly to a specified line number in an IDL Editor window.
The Go To Line dialog box appears. Enter the line number in the Goto Line: field.

Go To Definition [CTRL+T]

Use this option to display the definition of the currently selected procedure or
function, which must have been compiled during the current IDLDE session.

Run Menu

Run Menu items are enabled when an IDL program is loaded into an IDL Editor
window. If you click the right mouse button while positioned over an editor window,
a popup menu appears allowing you to quickly access several of the most convenient
commands. The popup menu changes to display common debugging commands if
IDL is running a program. See Chapter 18, “Debugging an IDL Program” in Building
IDL Applications for more detailed information.
The Menu Items Using IDL

Chapter 4: The IDL for Motif Interface 113
Compile filename.pro [CTRL+F5]

Select this option to compile filename.pro. The currently selected file is only
recognized as an IDL procedure or function if suffixed with .pro. Selecting this
option is the same as entering .COMPILE at the Command Input Line, with the
appropriate Editor window selected in the Multiple Document Panel.

You can also compile files from the Command Input Line. Enter the following at the
IDL prompt:

.COMPILE file1 [file2 ... filen]

where file is the name of the file you want to open. IDL opens your files in Editor
windows and compiles the procedures and functions contained therein. If the path is
not specified in the Paths Preference from the File menu, you must enter the full
path for file.

See .COMPILE in the IDL Reference Guide for more detail.

Compile from Memory filename.pro [CTRL+F6]

Select this option to save and compile changes to the current editor window without
affecting the last-saved version of the file. The temporary file created allows you to
experiment without committing changes to the permanent file. Selecting this option is
the same as entering .COMPILE -f at the Command Input Line. See .COMPILE in the
IDL Reference Guide for a more detailed explanation.

Compile All

Select this option to compile all currently open *.pro files.

Run filename [F5]

Select this option to execute the file, filename, contained in the currently active Editor
window. Selecting this option is the same as entering the procedure name at the
Command Input Line or using the .GO executive command at the Command Input
Line. If the file is interrupted while running, selecting this option resumes execution;
it is the same as entering .CONTINUE at the Command Input Line. For more
information, see .CONTINUE and .GO in the IDL Reference Guide.

Note
In order for the Run option to reflect the correct procedure name in the Run menu,
the .pro filename must be the same as the main procedure name. For example, the
file named squish.pro must include: pro squish.
Using IDL The Menu Items

114 Chapter 4: The IDL for Motif Interface
Resolve Dependencies [ALT+F5]

Select this option to iteratively compile all uncompiled IDL routines that are
referenced in any open and compiled files. Selecting this option is the same as
entering RESOLVE_ALL, /QUIET at the Command Input Line. The QUIET
keyword suppresses informational messages. See RESOLVE_ALL in the IDL
Reference Guide for a more detailed explanation.

Profile

Select this option to access the Profile dialog. The IDL Code Profiler allows you to
analyze the performance of your applications. You can identify which modules are
used most frequently, and which modules take up the greatest amount of time. For
more information, see “The IDL Code Profiler” in Chapter 14 of Building IDL
Applications.

Break [CTRL+C]

Select this option to interrupt program execution. IDL inserts a marker to the left of
the line at which program execution was interrupted.

Stop [CTRL+R]

Select this option to stop program execution and return to the main program level.
Selecting this item is the same as entering the following at the Command Input
Line:

RETALL
WIDGET_CONTROL,/RESET
CLOSE, /ALL
HEAP_GC, /VERBOSE

See RETALL, WIDGET_CONTROL, CLOSE, or HEAP_GC, all contained in the
IDL Reference Guide, for more detailed explanations.

Reset

Select this option to completely reset the IDL environment. This option executes
.RESET_SESSION. See the IDL Reference Guide for more information.

Step Into [F8]

Select this option to execute a single statement in the current program. The current
line indicator advances one statement. If the statement being stepped into calls
another IDL procedure or function, statements from that procedure or function are
executed in order by successive Step commands. Selecting this item is the same as
The Menu Items Using IDL

Chapter 4: The IDL for Motif Interface 115
entering .STEP at the IDL Command Input Line. See .STEP in the IDL Reference
Guide for a more detailed explanation.

Step Over [F10]

Select this option to execute a single statement in the current program. The current
line indicator advances one statement. If the statement being stepped over calls
another IDL procedure or function, statements from that procedure or function are
executed to the end without interactive capability. Selecting this item is the same as
entering .STEPOVER at the IDL Command Input Line. See .STEPOVER in the IDL
Reference Guide for a more detailed explanation.

Step Out [CTRL+F8]

Select this option to continue processing until the current program returns. Selecting
this item is the same as entering .OUT at the IDL Command Input Line. See .OUT
in the IDL Reference Guide for a more detailed explanation.

Trace ...

Select this option to access the Trace dialog. You can modify the interval between
successive .STEP or .STEPOVER commands, depending on whether the Step Over
option is enabled. The current-line indicator points to program lines as they are
executed. Selecting this item at full speed is the same as entering .TRACE at the IDL
command prompt. See .TRACE in the IDL Reference Guide for a more detailed
explanation.

Run to Cursor [F7]

Select this option to execute statements in the current program up to the line where
the cursor is positioned. Selecting this item is the same as setting a one-time
breakpoint at a specific line. See BREAKPOINT in the IDL Reference Guide for a
more detailed explanation.

Run to Return [CTRL+F7]

Select this option to execute statements in the current procedure or function up to the
line where the return is positioned. Selecting this item is the same as setting a one-
time breakpoint at a specific line. See .RETURN in the IDL Reference Guide for a
more detailed explanation.

Set Breakpoint [F9]

Select this option to set a breakpoint on the current line. Selecting this item is the
same as entering the following at the IDL Command Input Line:

BREAKPOINT, ['file',] index
Using IDL The Menu Items

116 Chapter 4: The IDL for Motif Interface
where ’file’ is the file in which to set a breakpoint, and index designates the line
number at which the breakpoint is set.

See BREAKPOINT in the IDL Reference Guide for a more detailed explanation.

Disable Breakpoint

Select this option to access disable a breakpoint in the current line.

See “Debugging an IDL Program” in Chapter 18 of Building IDL Applications for a
more detailed explanation.

Edit Breakpoint

Select this option to access the Edit Breakpoint dialog to set a complex breakpoint.
Complex breakpoints may function only once, or may function only after being hit a
specified number of times. Selecting this item is the same as setting the AFTER and
ONCE keywords for the BREAKPOINT procedure at the IDL Command Input Line.

Enter the source file in which to set a breakpoint in the File field. The default field is
the one in which the cursor is positioned. Click File..., at the bottom of the dialog, to
search through available directories. Enter the line number at which to place the
breakpoint in the Line field. The default is the line at which the cursor is currently
positioned. You can specify how many times the line must be hit in order to interrupt
execution. Click Once to interrupt execution after encountering the line for the first
time or click Break After and enter the number of hits after which execution should
be interrupted into the given field. Click on Condition to specify an expression that
will be evaluated each time the breakpoint is encountered. If and when the condition
is true, program execution is interrupted.

See BREAKPOINT in the IDL Reference Guide for a more detailed explanation.

Up Stack [CTRL+Up]

Select this option to move up the call stack by one.

Down Stack [CTRL+Down]

Select this option to move down the current call stack by one.

List Call Stack

Select this option to display the current nesting of procedures and functions.
Selecting this item is the same as entering HELP, /TRACEBACK at the IDL
Command Input Line. See HELP in the IDL Reference Guide for a more detailed
explanation.
The Menu Items Using IDL

Chapter 4: The IDL for Motif Interface 117
Project Menu

For more information on the following menu items, see Chapter 13, “Creating IDL
Projects” in Building IDL Applications.

Add/Remove Files...

Select this option to add or remove files from the current project.

Remove Selected

Selecting this option removes the currently selected file from your IDL Project.

Move To

Selecting this option moves the currently selected file to the group you specify in
your IDL Project.

Groups...

Selecting this option displays the Project Groups dialog from which you can create
a new group or rename, remove, move up or down, or set to filter specific file types
for the default groups within an IDL Project.

Options...

Select this option to change the options for a project. The Project Options dialog
displays.

Compile

Select this option to compile files in a project. You can choose either All Files to
compile all the source files in a project or Modified Files to compile only the files
that have been modified since the last compile.

Build

Select this option to build your project.

Run

Select this option to run the application defined by your project.

Export

Select this option to export your project.
Using IDL The Menu Items

118 Chapter 4: The IDL for Motif Interface
Macros Menu

Macros allow you to access frequently used IDL commands from a menu. You can
add your own macros to the macros menu by editing your .idlde resource file. See
“Modifying the Macros Menu” on page 152 for more information. The following
macros are installed by default. (UNIX syntax is shown; similar macros are installed
under OpenVMS.)

Edit...

Select this option to access the Edit Macros dialog. The Edit Macros dialog is a
convenient GUI with which you can modify existing macros or create new ones. The
macros can be applied as either a menu item or a toolbar button. Click on a menu or
toolbar macro to view its attributes. You can specify different attributes for a macro,
some of which are required. You can also rearrange the order of the menu or toolbar
macros with the up and down arrows located at the bottom of the Macro Attributes
section.

Print Var

Select this option to print the selected variable. Selecting this item is the same as
entering PRINT, x at the IDL Command Input Line, where x is the selected variable.

Help On Var

Select this option to list attributes of the selected variable. Selecting this item is the
same as entering HELP, x, /STRUCTURES at the IDL Command Input Line, where x
is the selected variable.

Import Image

Select this option to import an image file into IDL. For more information, see “Using
Macros to Import Image Files” on page 193.

Import Ascii

Select this option to import an ASCII file into IDL. For more information, see “Using
Macros to Import ASCII Files” on page 197.

Import Binary

Select this option to import a binary file into IDL. For more information, see “Using
Macros to Import Binary Files” on page 203.
The Menu Items Using IDL

Chapter 4: The IDL for Motif Interface 119
Import HDF

Select this option to import an HDF file into IDL. For more information, see “Using
Macros to Import HDF Files” on page 210.

IDL Demo

Select this option to start the IDL Demo application.

Window Menu

Read Only

Select this option to enable or disable editing of the currently selected window. A
filled square next to the item indicates Read-Only status.

Next [F11]

Select this option to shift IDL’s focus to the next numbered editor window.

Previous [ALT+F11]

Select this option to shift IDL’s focus to the previous numbered editor window.

Cascade

Select this option to arrange all open windows in a staggered, overlapping fashion.

Tile

Select this option to arrange all open windows in a non-overlapping fashion.

Close All

Select this option to close all open files. If a file has not yet been saved, you are
prompted to save the changes.

Configure

Select this option to access a pulldown menu which alters the appearance of the
IDLDE. Select each toggle option to hide or show each component. For more
information about each component, see “The Main IDL Window” on page 103.

• Hide Control (Show Control)

• Hide View (Show View)

• Hide Log (Show Log)

• Hide Variable Watch (Show Variable Watch)
Using IDL The Menu Items

120 Chapter 4: The IDL for Motif Interface
• Hide Command (Show Command)

• Hide Status (Show Status)

• Hide Project (Show Project)

Tool Bar

Select this option to access a pulldown menu with the three Windows toolbars: Hide
Standard Tools (Show Standard Tools), Hide Run & Debug Tools (Show Run &
Debug Tools), and Hide Macros (Show Macros).

Multiple Windows (Single Window)

Select this option to toggle between two available window arrangements. Selecting
Multiple Windows opens windows outside the IDLDE interface. By default, all
windows are staggered. Selecting Single Window displays the most recent window
within the main window and lists the others as menu items in the Window menu.

Open Windows

The menu items at the bottom of the Window menu display open files. Select any of
these menu items to make that window the current window. If the Single Window
menu item is active, the selected file will be displayed in the main window. If the
Multiple Windows menu item is active, the selected item’s window will be brought
to the foreground.

Help Menu

Help on IDL...

Select this option to display the IDL Online Help Viewer.

Find Topic...

Select this option to access the Search dialog for IDL Online Help.

Help on IDE...

Select this option to display this chapter of Using IDL.

Help on Help

Select this option to learn about how to use Help.

About IDL

Select this option to display information on the IDL version in use.
The Menu Items Using IDL

Chapter 4: The IDL for Motif Interface 121
Keyboard Shortcuts

Many of the menu options can be accessed from the keyboard as well as by selecting
from the menus. The following table below lists all of the available keyboard
equivalents. Note that these equivalents are also shown to the right of each menu item
in the menus themselves.

Keyboard Shortcut Function

Alt+C Copy selected text

Alt+F Find

Alt+G Find Again

Alt+I Find Selection

Alt+P Replace and Find

Alt+R Replace

Alt+T Enter Selection

Alt+V Paste

Alt+X Cut selected text

Alt+Y Redo

Alt+Z Undo

Alt+F5 Resolve dependencies

Alt+F11 Previous numbered editor window

Ctrl+C Interrupt program execution / Break

Ctrl+G Go To Line

Ctrl+N New editor window

Ctrl+O Open IDL Editor window

Ctrl+P Print contents of editor window

Ctrl+Q Exit IDL

Ctrl+S Save contents of editor window

Table 4-2: Keyboard Shortcuts
Using IDL Keyboard Shortcuts

122 Chapter 4: The IDL for Motif Interface
Ctrl+T Go To Definition

Ctrl+W Save contents of editor window to another
file name

Ctrl+Y Erase contents of Output Log

Ctrl+F5 Compile program in current window

Ctrl+F6 Compile program from memory

Ctrl+F7 Run to Return

Ctrl+F8 Step Out

Ctrl+↑ (Up arrow) Up stack

Ctrl+↓ (Down arrow) Down stack

Delete Deletes selection

F5 Run

F6 Continue stopped program in current
window

F7 Run to cursor

F8 Step Into

F9 Set/Clear Breakpoint

F10 Step Over

F11 Next numbered editor window

Keyboard Shortcut Function

Table 4-2: Keyboard Shortcuts
Keyboard Shortcuts Using IDL

Chapter 4: The IDL for Motif Interface 123
Using Preferences to Customize IDLDE

The IDLDE can be customized in two ways. By editing the resource files or by
selecting Preferences from the IDL File menu. The Control Panel buttons and the
Menu items are two common areas of customization. For further information about
editing resource files, see “Using Resources to Customize IDL” on page 135.

The IDL Preferences dialog box contains five tab selections with which you can
customize your interaction with the IDLDE environment. The seven categories are:
General, Layout, Graphics, Edit, Startup, Fonts, and Paths.

Note
It is important to understand the distinctions in application that occur throughout the
Preferences Dialog, as described in the table below.

Button Effect

OK Changes are applied to the current session and the Preferences
dialog is dismissed.

Apply Changes are applied to the current session but not saved. The
Preferences dialog remains visible.

Save Changes are applied to the current session and saved. If the option
has an asterisk next to it, you must save and restart the IDLDE for
the change to take effect.

Cancel Any unapplied changes are ignored and the Preferences dialog is
dismissed.

Table 4-3: Application Button Distinctions
Using IDL Using Preferences to Customize IDLDE

124 Chapter 4: The IDL for Motif Interface
General Preferences

Program

You can specify how IDL handles starting up and exiting. Click on the following
check boxes to apply or disable the options:

• Show Splash Screen — Select this option to show IDL’s splash screen on
startup. IDL must be restarted for this option to take effect.

• Save Preferences on Exit — Select this option to save all the settings—as
specified in the seven Preference tabs—from the current IDL session to be
applied to future IDL sessions.

• Confirm Exit

Log and Command Window

The performance of IDL can depend upon the number of saved lines. The amount of
memory required for greater numbers of saved lines can affect the speed at which
IDL will run. Click in the field next to each description and enter your adjusted value.

• Lines to Save — This field controls the minimum number of lines retained by
the Output Log window. The default is 500 lines. IDL must be restarted for
this option to take effect.

Figure 4-2: The General Preferences dialog
Using Preferences to Customize IDLDE Using IDL

Chapter 4: The IDL for Motif Interface 125
• Delete on limit — This field controls the number of lines to delete at a time
until the limit is reached again. The default is 125. IDL must be restarted for
this option to take effect.

• Lines saved in the recall buffer: — This field controls the maximum number
of lines saved in the recall buffer. There are three ways to access the contents
of the recall buffer, all of which are limited by this field. After locating the
cursor in the Command Input Line, you can press your up arrow key to scroll
through your last entries.You can also enter HELP, /RECALL in the Command
Input Line or click on your right mouse button while positioned over the
Command Input Line to display your entries up to the limit specified by the
recall buffer. The default is 20.

Files

You can specify how files are opened within the IDLDE:

• Change Directory on Open — Click on this check box to change the working
directory to the directory of the most recently opened file.

• Open Files Read Only — Click on this check box to open files so that they
are not writable.
Using IDL Using Preferences to Customize IDLDE

126 Chapter 4: The IDL for Motif Interface
Layout Preferences

This tab allows you to control the look of the main IDL window.

Main window

By default the size of the window is 1/4 of the screen size (i.e., 1/2 the screen width
and 1/2 the screen height). The window is positioned such that the upper-left corner
of the window is at the upper-left corner of the screen. Click on Default to use these
settings.

To change the layout, click on Specify, which allows you to adjust the positioning of
the window with the Left and Top fields and to adjust the size of the window with
the Width and Height fields.

• Left — The horizontal location of the upper-left corner of the main IDL
window (in pixels) relative to the left side of the screen. The default is 75.

• Top — The vertical location of the upper-left corner of the main IDL window
(in pixels) relative to the top of the screen. The default is 25.

• Width — The width of the main IDL window in pixels. The default is 1/2 the
screen width. The value in this entry reflects the current width of the main IDL
window.

Figure 4-3: The Layout Preferences dialog
Using Preferences to Customize IDLDE Using IDL

Chapter 4: The IDL for Motif Interface 127
• Height — The height of the main IDL window in pixels. The default is 1/2 the
screen height. The value in this entry reflects the current height of the main
IDL window.

Click Remember to apply the settings to future IDL sessions. This option—as
indicated by the asterisk before Main Window— is unavailable until IDL has been
restarted.

Windows

These options are also contained in the Window menu of the IDLDE. The difference
between the Windows section of the Layout Preferences and the Window menu is
that any changes to the Preferences are applies to future IDL sessions.

• Editor Layout — Click on Multiple to display open Editor windows
separately from the main IDLDE window. The Editor Layout is listed as
Multiple Windows/Single Window in the Window menu.

• Hide — Click on any of the sections of the IDLDE window to hide them from
view. If the check box is marked, the section is hidden. By default, none of the
sections are hidden. The Hide options are found in the pulldown menu
accessed with the Configure option from the Window menu.

• Separate — Click on the available sections to separate them from the main
IDLDE window. If the check box is marked, the section can be found on the
desktop in a separate window. If you dismiss a window, the Hide option for
that section, as described above, is enabled. To view a dismissed window, un-
hide it and click OK or Apply.

Note
If the Multiple Windows option is enabled, the choice to hide or view the Editor
windows is not available.

Control Panel

You can specify how you would like to display the Control Panel buttons:

• Hide Tools — Click on any of the available toolbars: Standard,
Run&Debug, and User to change their visibility. If a box is checked (it will
appear darker), the toolbar with which it is associated is hidden on the main
IDLDE window.

• Number of Rows — Enter the number of rows to use in displaying any visible
toolbars. You can select from 1 to 3 rows. If the window has been separated, as
Using IDL Using Preferences to Customize IDLDE

128 Chapter 4: The IDL for Motif Interface
described in Separate above, number entered is reflected in the separated
window.

• Vertical — If the Control Window has been separated, you can specify if the
Toolbars should be displayed horizontally or vertically. If the Vertical check
box is marked, the toolbars are displayed vertically in a separate window. By
default, separated toolbars are displayed horizontally. This option is available
only when the Control Panel has been separated.

Graphics Preferences

Windows Size

This section of the Graphics Preferences tab allows you to specify the appearance of
an IDL graphics window.

• Default Width — The width of IDL graphics windows, in pixels. The default
is 1/4 of the total screen width.

• Default Height — The height of IDL graphics windows, in pixels. The default
is 1/4 of the total screen height.

• Use 1/4 the screen size — If this box is checked, the Graphics windows are set
to 1/2 the screen size in both width and height. If this box is unchecked, the
Graphics windows are sized according to content.

Figure 4-4: The Graphics Preferences dialog
Using Preferences to Customize IDLDE Using IDL

Chapter 4: The IDL for Motif Interface 129
Backing Store

When backing store is enabled, a copy of each Graphics window is kept in memory.
The copy of the window is used to refresh the window when it has been covered and
uncovered. IDL’s performance increases for no backing store, since the amount of
memory required to save files can affect the speed at which IDL will run.

See “Backing Store” in Appendix B of the IDL Reference Guide for more
information.

• None, RETAIN = 0

Click None to disable backing store. This option does not keep a copy of the
window, allowing the highest performance in terms of speed.

• System, RETAIN = 1

Click this option to request backing store from the server.

• Pixmap, RETAIN = 2

Click this option (the default) to have IDL maintain backing store. Most users
should keep this value set to 2.

Graphics Attributes

• Size of TrueType Font Cache (in glyphs) — Enter the number of TrueType
characters whose triangulation information will be saved. Saving the
triangulation information for TrueType characters means that IDL will not
have to calculate the polygons to draw the next time a character of the same
font and size is rendered. Larger values will use more memory but can increase
drawing speed if multiple fonts are used. The default is 256.

• Object Graphics Renderer — Select either Hardware Rendering
(OpenGL) or Software Rendering. See Chapter 28, “Window Objects” for
information about the differences between the two rendering systems.
Using IDL Using Preferences to Customize IDLDE

130 Chapter 4: The IDL for Motif Interface
Edit Preferences

This tab allows you to set the way in which IDL compiles files. By default, IDLDE
asks if you would like to save changes. You can also set IDLDE to make a backup
copy of the source file.

Figure 4-5: The Edit Preferences dialog
Using Preferences to Customize IDLDE Using IDL

Chapter 4: The IDL for Motif Interface 131
Startup Preferences

This tab allows you to specify the location of a file to be run when IDLDE starts.

Select IDL Main Dir ...

Click on this button to start the Select IDL Main Dir dialog, which shows you where
the main IDL directory is located. The default is the location you specified when you
installed IDL. There is no reason to change this entry. The location of the home IDL
directory is shown primarily for informational purposes. You must restart IDL for
any changes to take effect.

Select Working Directory

Click on this button to start the Select Working Directory dialog. You can specify
the initial working directory for future IDL sessions. The General Preferences tab
contains a “Change Directory on Open” option, described under “Files” on page 125,
which also affects the working directory.

Select Startup File

Click on this button to start the Select Startup File dialog. You can specify the name
of an IDL batch file to be executed automatically each time IDL is run. For example,
to execute the commands in a batch file named MYBATCH.PRO, located in the
/home/user directory, use:

Figure 4-6: The Startup Preferences dialog
Using IDL Using Preferences to Customize IDLDE

132 Chapter 4: The IDL for Motif Interface
/home/user/MYBATCH.PRO

Disable the use of the startup file by selecting the Don’t Use Startup File button.

Warning
Startup files are executed one statement at a time. It is not possible to define
program modules, (procedures, functions, or main-level programs) in the startup
file. See “Startup File” on page 58 for more information.

Font Preferences

This tab allows you to control which fonts are to be used for the main IDL window.
Click on any of the following buttons to specify the relevant font:

• Default — dialog boxes

• Menubar — menu items

• Control — the Control Panel

• Edit — editor windows

• Log — the Output Log

• Command — the Command Input Line

Figure 4-7: The Font Preferences dialog
Using Preferences to Customize IDLDE Using IDL

Chapter 4: The IDL for Motif Interface 133
Path Preferences

This tab allows you to control where IDL looks for procedures and functions. Entries
into the IDL Files Search Path are appended to the system variable !PATH.

Note
You must restart IDLDE for changes to take effect.

IDL Files Search Path

This field tells IDL where to look for procedures and functions.

Select one of the paths by clicking on it; it becomes highlighted. You can select more
than one path at a time by clicking once with your left mouse button on the first path,
and dragging the mouse down to the last path you want to select.

• Subdirectory check boxes — To specify a directory tree that includes all of
that directory’s subdirectories, click on the check box to the left of a path,
placing an x in front of the entry.

• Up and Down Arrow buttons — You can move the selected path up or down
through the list by clicking on the up or down buttons located directly below
the IDL Files Search Path list. A second click on a selected path causes it to
become outlined, but not selected. You can also scroll through the list by

Figure 4-8: The Paths Preferences dialog
Using IDL Using Preferences to Customize IDLDE

134 Chapter 4: The IDL for Motif Interface
pressing the up and down arrows on your keyboard after either selecting or
outlining one of the paths.

• Insert... — To add a path to the IDL Files Search Path list, click on Insert...
to start the Select Path dialog. The new path is inserted before the first
selected path. If none of the paths are selected, the new path is appended to the
end of the list.

• Remove — Click on Remove to delete the selected path.

• Expand — Click on Expand to list a selected path’s subdirectories directly
beneath the path. The expanded path is then deselected and any subdirectories
are selected so you can cancel the expansion by immediately clicking Remove.
The initial path and any expanded subdirectories are automatically unchecked
to prevent subdirectory searching.

See “Executing Program Files” in Chapter 2 for more information.
Using Preferences to Customize IDLDE Using IDL

Chapter 4: The IDL for Motif Interface 135
Using Resources to Customize IDL

X Resources in Brief

The component widgets of an X Window application each have two names, a class
name that identifies its type (e.g., XmText for the Motif text widget) and an instance
name (e.g., command, the name of the IDLDE command input text widget). The class
name can be used to set resources for an entire class of widgets (e.g., to make all text
widgets have a black background) while the instance name is used for control of
individual widgets (e.g., set the IDLDE command input window font without
affecting other widgets).

Applications consist of a tree of widgets, each having a class name and an instance
name. To specify a resource for a given widget, list the names of the widgets lying
between the top widget and the target widget from left to right, separated by periods.
In a moderately complicated widget hierarchy, only some of the widgets are of
interest; there are intervening widgets that serve uninteresting purposes (such as a
base that holds other widgets). A star (*) character can be used as a wildcard to skip
such widgets. Another fact to keep in mind is that a given resource specification is
interpreted as broadly as possible to apply to any widget matching that description.
This allows a very small set of resource specifications to affect a large number of
widgets.

Editing Resource Files

There are two resource files used to customize IDLDE. An installation-wide resource
file called Idl is located in $IDL_DIR/resource/X11/lib/app-defaults, and a user resource
file called .idlde is located in your home directory.

Modifying the global Idl resource file effects an installation-wide customization.
Changes to the Idl file will be lost with a new installation.

The user resource file, .idlde, customizes individual versions of IDLDE and is divided
into two sections. The first section contains user-defined customization resources.
You can place comments starting with “!” or “!!” in the first section of .idlde. When
newer versions of .idlde are written, system comments are prefixed with “!!!”. The
second section of .idlde is used to store preferences; it is modified when preferences
are saved and shouldn’t be modified externally.
Using IDL Using Resources to Customize IDL

136 Chapter 4: The IDL for Motif Interface
Reserving Colors

When IDL starts, it attempts to secure entries in the shared system color map for use
when drawing graphics. If the entry Idl.colors exists in the Idl resource file, IDL will
attempt to allocate the number of colors specified from the shared colormap. If for
some reason it cannot allocate the requested number of colors from the shared
colormap, IDL will create a private colormap. Using a private colormap ensures that
IDL has the number of colormap entries necessary, but can lead to colormap flashing
when the cursor or window focus moves between IDL and other applications.

One way to avoid creating a private colormap for IDL is to set the Idl.colors resource
equal to a negative number. This causes IDL to try to use the shared colormap,
allocating all but the specified number of colors. For example:

Idl.colors = -10

instructs IDL to allocate all but 10 of the currently available colors for its use. Thus,
if there are a total of 220 colors not yet reserved by other applications (such as the
windowing system), IDL will allocate 210 colors from the shared colormap.

The IDLDE application itself uses between 10-15 colors. On startup, the IDLDE will
attempt to use colors in the shared colormap, but will reserve colors for itself if
appropriate matching colors in the shared colormap are not found. As a result,
running IDL with the IDLDE may use more colors than running IDL with the tty
(plain command line) interface.

If you experience colormap flashing when using the IDLDE, but not when you use
the plain tty interface, try adjusting the number of colors used by the IDLDE
interactively, using the -colors startup flag. For example,

idlde -colors -15

starts the IDLDE and allocates all but 15 of the currently available colors. When you
find an appropriate number of colors to reserve, you can set the idlde.colors resource
in the Idl resource file or in your personal .idlde file accordingly.
Using Resources to Customize IDL Using IDL

Chapter 4: The IDL for Motif Interface 137
Command Line Options

IDLDE can also be customized from the command line using the command line flags
described below. Command line flags are given precedence over global resource files
(Idl) and user resource files (.idlde). For more information about resources, see “Using
Resources to Customize IDL” on page 135. Under VMS, command line switches are
preceded by a / rather than a -.

Example

Type the following at the operating system command line to start IDLDE using
separate main-level windows to display files:

; On UNIX:
idlde -multi
; or on VMS:
IDLDE /MULTI

The available command line flags follow:

-e file [-e file1 -e file2...]
/EDIT=(file [, file1, file2...])

Opens specified files at startup.

-colors n
/COLORS=n

If specified, IDL attempts to allocate n colors specified from the shared colormap. If
there aren’t enough colors available, a private colormap with n colors is used instead.

Specifying a negative value for the colors flag causes IDL to attempt to use the
shared colormap, allocating all but the specified number of colors. For example:

idlde -colors -15

allocates all but 15 of the currently available colors for the IDLDE. This allows other
applications that might need their own colors to run in tandem with IDL.

The related resource is idlde.colors.

-nocommand

/NOCOMMAND

Hides the Output Log window and Command Input Line at startup. The related
resource is Idl*idlde*hideCommand: True.
Using IDL Command Line Options

138 Chapter 4: The IDL for Motif Interface
-command

/COMMAND

Displays Log window and Command Input window at startup. The related resource is
Idl*idlde*hideCommand: False.

-nocontrol

/NOCONTROL

Hides the Control panel buttons at startup. The related resource is
Idl*idlde*hideControl: True.

-control

/CONTROL

Displays the Control Panel buttons at startup. The related resource is
Idl*idlde*hideControl: False.

-nolog

/NOLOG

Hides the Output Log at startup. The related resource is
Idl*idlde*hideLog: True.

-log

/LOG

Displays the Output Log at startup. The related resource is
Idl*idlde*hideLog: False.

-nostartup

/NOSTARTUP

Does not execute startup file on startup (including IDL_STARTUP). The related
resource is Idl*idlde.noStartupFile: True.

-startup

/STARTUP

Executes startup file on startup (including IDL_STARTUP). The related resource is
Idl*idlde.noStartupFile: False.
Command Line Options Using IDL

Chapter 4: The IDL for Motif Interface 139
-startupfile "file"

/STARTUPFILE="file"

Executes file at startup (overrides IDL_STARTUP environment variable). If
startupfile is not specified, the environment variable IDL_STARTUP is used as the
startup file (if defined). The related resource is Idl*idlde.startupFile: file where file is
the full path name of the startup file.

-nostatus

/NOSTATUS

Hides the Status Bar at startup. The related resource is
Idl*idlde*hideStatus: True.

-status

/STATUS

Displays the Status Bar at startup. The related resource is Idl*idlde*hideStatus: False.

-path "path"

/PATH="path"

Append path to the IDL path (defined using IDL_PATH environment variable). The
related resource is Idl*idlde.path: path where path is the full path to be appended.

-quiet

/QUIET

Inhibits display of the IDL startup announcement and message of the day (motd) file.

-readonly

/READONLY

Opens files as read-only. The related resource is Idl*idlde.readOnly: True.

-readwrite

/READWRITE

Open files as read-writeable. The related resource is
Idl*idlde.readOnly: False.
Using IDL Command Line Options

140 Chapter 4: The IDL for Motif Interface
-single

/SINGLE

Displays files in a single window, which is a child of the main IDLDE window. The
related resource is Idl*idlde*multiWindowEdit: False.

-multi

/MULTI

Displays files in multiple windows, each one in a separate main level window. The
related resource is Idl*idlde*multiWindowEdit: True.

-view

/VIEW

Displays the Multiple Document Panel in single window mode at startup. The related
resource is Idl*idlde*hideView: False.

-noview

/NOVIEW

Hides the Multiple Document Panel at startup. The related resource is
Idl*idlde*hideView: True.

-title "Title"

/TITLE="Title"

Use Title as the title of the main IDLDE window. The related resource is idlde.title.

/VAX_FLOAT

This option is available only in IDL for VMS. Set this qualifier to change the default
value of the VAX_FLOAT keyword of the CALL_EXTERNAL and OPEN
procedures to be TRUE. Starting IDL with this qualifier allows old code that is
written to assume IDL reads and writes VAX format floating-point numbers to
continue reading and writing that format without requiring changes to the IDL code.
There are three caveats:

1. Internally, IDL is still using IEEE floating-point numbers.

2. This option should be used as a transitional aid prior to converting the code to
work with IEEE math. It is not a good long term strategy to use IDL in this
mode.
Command Line Options Using IDL

Chapter 4: The IDL for Motif Interface 141
3. There is no such support for LINKIMAGE routines, which must be rebuilt to
use the IEEE floating-point standard.

You can also change this default at run-time using the VAX_FLOAT function in the
IDL Reference Guide.

Note
You should read the warnings on this topic found in the OPEN and
CALL_EXTERNAL routines in the IDL Reference Guide.
Using IDL Command Line Options

142 Chapter 4: The IDL for Motif Interface
Modifying the Control Panel

The Control Panel, with the resource name control, is located below the Menu bar.
The Control Panel bar is a RowColumn widget containing buttons which serve as
shortcuts for common commands.

You can modify the existing Control Panel with either the idlButtonsUser resource,
or, for the Macros toolbar only, by clicking Edit in the Macros menu.

The idlButtonsUser resource supplies each button’s resource name. The resource
name details button attributes, such as its label or pixmap, its associated IDL
command, and its status bar message.

To add a Control Panel button, make the following modifications to the .idlde file:

• Add a new name to the idlButtonsUser list. The buttons are created in the order
specified.

• Add labelString or labelPixmap resources. These resources define the button text
or image.

• Add an idlCommand resource. This is the text of the IDL command to execute.

• Add a statusString resources. This is the text that appears in the Status Bar when
the cursor is positioned over the new button.

Bitmaps for Control Panel Buttons

Bitmaps for control panel buttons must conform to the following:

1. The bitmap must be in either XBM (X11 bitmap file) or XPM (X11 system
pixmap file) format, with the file extension .xbm or .xpm.

2. The bitmap must be located in one of the following directories:

Under UNIX:

• $IDL_DIR/resource/X11/lib/app_defaults

• $IDL_DIR/resource/X11/lib/app_defaults/bitmaps

• $HOME

• $HOME/bitmaps

Under VMS:

• IDL_DIR:[RESOURCE.X11.LIB.X11.APP-DEFAULTS.BITMAPS]

• SYS$LOGIN
Modifying the Control Panel Using IDL

Chapter 4: The IDL for Motif Interface 143
3. The bitmap must be defined in the resource file (Idl, .idlde), for example:

idlde*control*mybutton*labelPixmap: mybutton

Examples

• To add a button called Reset All to the Control Panel with color pixmap
stored in the file resetall.xpm located in your home directory add the following
resources to your .idlde:

Idl*idlde*control*idlButtonsUser: resetall
Idl*idlde*control*resetall*labelPixmap: resetall.xpm
Idl*idlde*control*resetall*labelString: Reset All
Idl*idlde*control*resetall*idlCommand:\
RETALL & WIDGET_CONTROL,/RESET
Idl*idlde*control*resetall*statusString:\
Stop execution of the current code and return to\
the main programming level

• To specify a pixmap located in particular directory, specify the full file path of
the pixmap file, for example:

Idl*idlde*control*resetall*labelPixmap:\
/home/user/bitmaps/resetall.xpm

• To create two rows of the Control Panel from the default of one row, set the
numColumns resource to 2:

Idl*idlde*control*numColumns: 2

• To use label (text) buttons in the Control Panel set labelType to XmSTRING.
To use icon (graphics) buttons set labelType to XmPIXMAP.

Idl*idlde*control*labelType: XmPIXMAP

Command Stream Substitutions

The idlCommand resource specifies the IDL command that is entered into the input
command stream when the respective button is clicked. You can use % substitutions
to include certain types of information into the command:

% Symbol Substitution

%S The text of the current selection.

Table 4-4: Command Stream Substitutions
Using IDL Modifying the Control Panel

144 Chapter 4: The IDL for Motif Interface
%F or %P The filename associated with the current
IDL Editor.

%N The base name of the filename (without
path and suffix).

%B The base name of the filename (without
path, but with a suffix)

%L The line number with the current insertion
point.

%% Inserts “%”.

% Symbol Substitution

Table 4-4: Command Stream Substitutions
Modifying the Control Panel Using IDL

Chapter 4: The IDL for Motif Interface 145
Action Routines

Most Motif widgets supply action routines which can be bound to events (such as
keypress events). Action routines provided by IDL can be used to define commands
for Control Panel buttons or menu items by using the idlAction resource.

The following action routines can be used in the same manner as the IDL commands
specified in an idlCommand resource. The syntax to add an action routine to a control
panel button is:

Idl*idlde*control*button name*idlAction: action

where button name is the name of the button and action is the name of the action
routine.

IdlBreakpoint

Use IdlBreakpoint to control the placement of breakpoints. If no parameter is
specified, the breakpoint is set on the current line. At least one of the arguments from
Table 4-4 must be set:

IdlClearLog

Use IdlClearLog to erase the contents of the Output Log.

IdlClearView

Use IdlClearView to clear the contents of the currently-active file in the Multiple
Document Panel.

Argument Action

SET Set a breakpoint on the current line.

CLEAR Clear the breakpoint on the current line.

TOGGLE Toggle (SET or CLEAR) the state of the
breakpoint on the current line.

COMPLEX Display breakpoint dialog to set a complex
breakpoint.

LIST List all currently set breakpoints

Table 4-5: Breakpoint Arguments
Using IDL Action Routines

146 Chapter 4: The IDL for Motif Interface
IdlCommandHide

Use IdlCommandHide to hide or expose the Command Area, which includes the
Command Input Line and the Output Log. One of the following arguments must be
set: Show, Hide, or Toggle.

IdlCompile

Use IdlCompile to compile the file in the currently-active editor window. One of the
arguments from the following table must be set:

IdlControlHide

Use IdlControlHide to hide or expose the Control Panel. One of the following
arguments must be set: Show, Hide, or Toggle.

IdlEdit

Use IdlEdit to manipulate the contents of the currently-selected editor window. One
of the arguments from the following table must be set:

Argument Action

FILE Compiles the currently-active
file.

TEMPORARY Compiles the currently-active
file into a temporary file

RESOLVE Resolves all referenced and
uncompiled IDL routines

Table 4-6: Compiling Arguments

Argument Action

UNDO Undo previous editing action.

REDO Redo previously undone
action.

CUT Remove currently-selected
text to Motif clipboard.

Table 4-7: Editor Window Editing Arguments
Action Routines Using IDL

Chapter 4: The IDL for Motif Interface 147
IdlEditMacros

Use IdlEditMacros to display the Edit Macros dialog.

IdlExit

Use IdlExit to cause IDLDE to act as though the EXIT command has been entered.
Note that this is usually tied to a menu accelerator (Ctrl-Q in this case), so this routine
is rarely called directly.

IdlFile

Use IdlFile to manipulate the currently-selected editor window. One of the arguments
in the following table must be set:

COPY Copy currently-selected text
to Motif clipboard.

PASTE Paste contents of Motif
clipboard at current insertion
point.

SELECTALL Select all of the text in the
currently-selected editor
window.

GOTODEF Display the definition of the
currently-selected procedure
or function.

GOTOLINE Move directly to the specified
line number.

Argument Action

NEW Creates a new editor window.

OPEN Opens an existing file.

Table 4-8: Editor Window Arguments

Argument Action

Table 4-7: Editor Window Editing Arguments
Using IDL Action Routines

148 Chapter 4: The IDL for Motif Interface
IdlFileReadOnly

Use IdlFileReadOnly to specify the read/write status of the currently-active editor
window. One of the arguments from the following table must be set:

IdlFunctionKey

Use IdlFunctionKey to allow entry of an IDL command into the input command
stream. It is typically used to tie IDL commands to function keys. For example:

<Key>F5:IdlFunctionKey("print, 'F5 pressed'")\n

IdlInterrupt

Use IdlInterrupt to cause IDLDE to receive an interrupt. Note that this is usually tied
to Ctrl-C as a menu accelerator.

IdlListStack

Use IdlListStack to display the current nesting of procedures and functions (calling
stack).

SAVE Saves the contents of the
currently-selected editor
window.

PRINT Prints the contents of the
currently-selected editor
window.

Argument Action

READONLY Disable editing of the
currently-selected editor
window.

READWRITE Enables editing of the
currently-selected window.

Table 4-9: Read/Write Arguments

Argument Action

Table 4-8: Editor Window Arguments
Action Routines Using IDL

Chapter 4: The IDL for Motif Interface 149
IdlLogHide

Use IdlLogHide to hide or expose the Output Log. One of the following arguments
must be set: Show, Hide, or Toggle.

IdlRecallCommand

Use IdlRecallCommand to recalls previously entered commands into the command
widget. Either the BACK or the FORWARD argument must be specified to indicate
the direction of the recall. For example:

<Key>osfUp:IdlRecallCommand(BACK)\n

IdlReset

Use IdlReset to reset the IDL environment.

IdlRun

Use IdlRun to execute the currently-active file.

IdlSearch

Use IdlSearch to call the Find dialog for a search of the current Multiple Document
Panel. One of the optional arguments from the following table may be used:

Argument Action

FIND Displays a search dialog (default).

FINDAGAIN Finds the next occurrence of the
specified string.

FINDSELECTION Finds next occurrence of the current
selection.

ENTERSELECTION Enters the current selection as the
search string in the Find dialog.

REPLACE Replaces the search string, with a
specified replacement string.

REPLACEFIND Finds the next occurrence of the search
string, and replaces it with the specified
replacement string.

Table 4-10: Find Dialog Arguments
Using IDL Action Routines

150 Chapter 4: The IDL for Motif Interface
IdlStatusHide

Use IdlStatusHide to hide or expose the Status Bar. One of the following arguments
must be set: Show, Hide, or Toggle.

IdlStep

Use IdlStep to control statement execution for debugging. At least one of the
arguments from the following table must be set.

IdlTrace

Use IdlTrace to display a dialog box to control program tracing.

IdlViewHide

Use IdlViewHide to hide or expose the Multiple Document Panel. One of the
following arguments must be set: Show, Hide, or Toggle.

Argument Action

INTO Executes a single statement in the current
program. If nested procedures or functions are
encountered, they are also executed in single-
statement mode.

OVER Executes a single statement in the current
program. If nested procedures or functions are
encountered, they are run until completion,
whereupon interactive control returns.

OUT Continues execution until current routine
returns.

SKIP Skips one statement and executes following
statement.

CONTINUE Continues execution of an interrupted program.

TOCURSOR Executes file until encountering the cursor.

TORETURN Executes file until encountering the return.

Table 4-11: Debugging Arguments
Action Routines Using IDL

Chapter 4: The IDL for Motif Interface 151
IdlWindows

Use IdlWindows to manipulate the state of the Editor windows. One of the arguments
from the following table must be set:

Argument Action

CASCADE Arrange open windows in a
staggered, overlapping
fashion.

TILE Arrange all windows in a
non-overlapping fashion.

MULTI Open windows outside the
IDLDE interface.

SINGLE Display the most recent
window on the Multiple
Document Panel.

Table 4-12: Editor Window Display Arguments
Using IDL Action Routines

152 Chapter 4: The IDL for Motif Interface
Modifying the Macros Menu

You can adjust the Macros menu. IDLDE looks for a resource named macrosList. If
macrosList is found, its value supplies the resource names of the additional buttons to
be added to the Macros menu. This allows system-dependent commands to be added
to IDLDE, which simplifies the process of calling external editors such as emacs or
vi.

Example

To add the menu item File in Big Vi to the Macros menu add the following resources
to .idlde:

;Define a new menu item:
Idl*idlde*menubar*macrosMenu*macrosListUser: bigViXterm
;Assign text to the defined menu item:
Idl*idlde*menubar*macrosMenu*bigViXterm*labelString:\
File in Big Vi
;Define a procedure to call up the vi editor:
Idl*idlde*menubar*macrosMenu*bigViXterm*idlCommand:\
SPAWN,'xterm -geometry 80x50 -e vi -c %L %F &
;Assign text for the status string:
Idl*idlde*menubar*macrosMenu*bigViXterm*statusString:\
Run vi in the Big Xterm window

Modifying other resources:

You can modify other resources in your user resource file. Check the Idl resource file
for available resources.

Example

To set your own IDLDE default font:

Idl*idlde*fontList: -*-Prestige-Medium-R-*-*-*-\
110-100-100-*-*-ISO8859-1
Modifying the Macros Menu Using IDL

Chapter 4: The IDL for Motif Interface 153
CDE File Manager Support

This section provides information on setting up the IDL Development Environment
to support the Common Desktop Environment (CDE) File Manager for HP-UX,
Solaris, and Tru64 UNIX. Setting up the IDLDE to provide CDE File Manager
support allows you to do the following:

• IDL .pro files can be dragged and dropped from the CDE File Manager onto
the IDLDE.

• Double-clicking on an IDL .pro file opens the file in the IDLDE.

During installation, the CDE Action File, Idl.dt, is installed in /etc/dt/appconfig/types/C/
on the local machine, if this directory has write permissions. This file provides the
necessary support for the CDE File Manager on that machine. However, if IDL is
installed on a server and is run on various client machines, the CDE Action File must
be manually copied to each client machine on which you want to provide support for
the CDE File Manager. This file must also be copied to the server if the
/etc/dt/appconfig/types/C/ directory did not have write permissions at installation time.
If the local machine does not contain the Idl.dt file in the /etc/dt/appconfig/types/C/
directory, do the following:

1. Locate the Idl.dt file in the directoryIDL_Dir/bin, where IDL_Dir is the directory
in which IDL is installed (such as /usr/local/rsi/IDL_5.4).

2. Copy Idl.dt to the /etc/dt/appconfig/types/C/ directory on the local machine. If the
/etc/dt/appconfig/types/C/ directory does not exist, copy the file to the
/usr/dt/appconfig/types/C/ directory.

3. In the Idl.dt file, verify that the path to theRSI_Dir/bin directory in the
ACTION Idl section is correct for the local machine. For example, if IDL is
located in the /usr/local/rsi/ directory, the ACTION Idl section should look like
this:

ACTION Idl
{

LABEL Idl
TYPE COMMAND
EXEC_STRING /bin/sh -c ‘. /usr/local/rsi/idl_setup.ksh;idl -c -e %Arg_1%’
ICON Dtactn
WINDOW_TYPE NO_STDIO
DESCRIPTION Start Idl Development Environment

}

4. Logout and log back in to the CDE.
Using IDL CDE File Manager Support

154 Chapter 4: The IDL for Motif Interface
CDE File Manager Support Using IDL

Chapter 5:

The IDL for
Macintosh Interface

IDL for Macintosh includes a built-in editing and debugging environment called the IDL
Development Environment (IDLDE). This chapter describes the IDLDE.
The following topics are covered in this chapter:
The Main IDL Windows 156
IDL Document Windows 159
The Menus . 163

Customizing IDL . 175
Macintosh IDL Differences 186
Using IDL 155

156 Chapter 5: The IDL for Macintosh Interface
The Main IDL Windows

When you start IDL, the IDL Output Log, the Command Input and the Variable
Watch Window appear.

Output Log

The Output Log window displays output from IDL and echoes commands input to
IDL. Only one Output Log window can exist at a time.

Command Input Line

The Command Input window is either anchored at the top or bottom of your screen
(depending on the setting in the General Preferences dialog) or is free-floating and
movable like any other window. An unanchored Command Input window can be
moved, resized, or hidden.

The Command Input window contains a single IDL prompt; this is where you enter
IDL commands. The commands you type and any output from IDL are displayed in
the Output Log.

Figure 5-1: The IDL Output Log Window
The Main IDL Windows Using IDL

Chapter 5: The IDL for Macintosh Interface 157
Variable Watch Window

The Variable Watch Window appears by default when you start the IDLDE. It
keeps track of variables as they appear and change during program execution. For
more information about the Variable Watch Window, see “The Variable Watch
Window” in Chapter 18 of Building IDL Applications.

Project Window

The IDL Project Window allows you to manage, compile, run, and create
distributions of all the files needed to develop an IDL application. All of your
application files can be organized for ease of access, and to be easier to export to

Figure 5-2: The Command Input Window

Figure 5-3: The Variable Watch Window
Using IDL The Main IDL Windows

158 Chapter 5: The IDL for Macintosh Interface
other developers, colleagues, or users. For further information on the Project
Window, refer to Building IDL Applications.

Figure 5-4: The Project Window
The Main IDL Windows Using IDL

Chapter 5: The IDL for Macintosh Interface 159
IDL Document Windows

IDL Editor Windows

IDL Editor windows allow you to write and edit IDL programs (and other text files)
from within IDL. Any number of Editor windows can exist simultaneously. If you
select File–>Open Recent or double-click on a .pro file, that file appears in an
Editor window. Editor windows can also be created by selecting New or Open from
the File menu.

The Editor window has a button bar with a path box and an icon which indicates
whether the file is writable or read-only. The buttons on the button bar from left to
right are Save, Print, Compile, and Run and are provided for ease of access during
editing. The path box is simply an informational box, it is not editable. The icon at the
right side of the button bar shows a pencil to indicate the file is writable, or a lock to
indicate the file is read-only.

Multiple Panes in the Editor Window

You can create multiple editing panes within the Editor window enabling you to edit
multiple sections of the program without having to scroll back and forth. To open a
second pane, click on the button at the top of the vertical scroll bar on the right and
drag it until a second horizontal base is seen. When you release the mouse button a
second pane with the same program appears. More than two panes are possible in an
Editor window, as long as each pane exceeds the minimum size necessary.

The Breakpoint Column

On the left side of each pane in the Editor window is a border used to display break
points, flag compiler errors, and the current executing line of code. Rows with tick
marks indicate program lines with executable IDL statements. You can set and unset
breakpoints on these lines by clicking on the tick mark or breakpoint. Click on the
tick mark to set the breakpoint, and click on the breakpoint to display the tick mark
again.

The Line Box

The line number button box at the bottom left of an IDL Editor window displays the
line number of the insertion point in the active pane. To relocate the cursor on another
line in the same pane, click in the box and specify the line number in the Go To Line
field of the new dialog box. Clicking the line number box is a shortcut for the Go To
Line option from the Search menu for the active pane in the Editor window.
Using IDL IDL Document Windows

160 Chapter 5: The IDL for Macintosh Interface
Function Drop Down List

The button with parentheses and a down arrow to the right of the Line box brings up
a drop down list containing the functions and procedures defined in the current .pro
file. Choosing a function or procedure from the list moves the cursor to that function
or procedure definition in the active pane of the Editor window.

Running With Breakpoints in The Editor Window

When you set breakpoints in a .pro file and compile and run the program, the Editor
window buttons change to allow you to step through the program using the
breakpoints. The four buttons at the top of the window become step buttons (see the
following figure) which call the various executive commands for stepping through a
program: at the left is Step Out which calls .OUT, next is Step Over which calls

Figure 5-5: The IDL Editor Window
IDL Document Windows Using IDL

Chapter 5: The IDL for Macintosh Interface 161
.STEPOVER, then Step In which calls .STEP, and the fourth button is Continue
which calls .CONTINUE.

Debug Windows

When IDL encounters a program error or breakpoint, and if the debugger is turned on
by selecting File–>Preferences–>General and marking the Use Debugger check
box (see “Use Debugger” on page 176), the IDL Editor window containing the
routine in question is brought to the front. If the file containing the error is not already
open, a new Editor window is opened to contain it. A current-line indicator is placed
at the line at which the breakpoint or error occurred. You can use standard Macintosh
editing commands to edit and save the program file.

Figure 5-6: Running with Breakpoints in the Editor Window
Using IDL IDL Document Windows

162 Chapter 5: The IDL for Macintosh Interface
Error Window

When IDL encounters a program error during compilation, the Error Window will
display and show all of the errors encountered. Clicking on the error displays the line
of the program that contains the error in the IDL Editor window.

IDL Graphics Windows

IDL Graphics windows appear when you use IDL to plot or display an image.

You can copy the contents of a Graphics window—Direct or Object—directly to the
operating system clipboard in a bitmap format using Command-C.

Figure 5-7: Error Window
IDL Document Windows Using IDL

Chapter 5: The IDL for Macintosh Interface 163
The Menus

Six menus (File, Edit, Search, Run, Project, Macros, Window, and Help) allow
you to control the operation of IDL for Macintosh. These menus are described below.
Note that many menu items have Command-key equivalents displayed to the right of
the menu option.

File Menu

New

Select this option to create a new, empty IDL Editor window.

New Project...

IDL Project Window allows you to manage, compile, run, and create distributions of
all the files needed to develop an IDL application. All of your application files can be
organized for ease of access, and to be easier to export to other developers,
colleagues, or users. For further information on the Projects Window, refer to
Building IDL Applications.

Open

Select this option to open a text file or project file for editing. The standard File
Selection dialog box appears. Select the file you want to open and click OK. A new
IDL Editor window is created to display the text file.

Open Selection

Select this option to use whatever text is selected as an argument to the Open
command. If the selected text is not the name of a file in the current folder or a valid
path, no file is opened.

Open Recent

Select this option to view or open recently opened or created files. This menu item
lists the last ten opened or created files, and it includes two sections for text and IDL
Project files. To open a file on this list, simply select it from the drop list.

Close / Hide

Select this option to close the currently-selected IDL window. If you have made
changes in the window, you are prompted to save the changes before closing it. If the
currently-selected window is the Output Log, this options changes to Hide Output
Log. If the currently-selected window is the Variable Watch Window, this option
Using IDL The Menus

164 Chapter 5: The IDL for Macintosh Interface
changes to Hide Variable Watch Window. You can re-display a hidden window by
selecting Output Log or Variable Watch from the Window menu.

Hold down the Close option and hit the Command key to close down all open Editor
windows with a single command.

Save

Select this option to save the contents of an IDL Editor window. If the window is
untitled, you are prompted for a filename for the new file. If the window is already
associated with a filename, the contents of the window are saved over the old file.

Hold down the Save option and hit the Command key to save all open Editor
windows with a single command.

Note
Changes made to a previously-compiled program or function are not noticed by the
IDL session until that file is re-compiled. Calling the routine simply re-runs the
currently-compiled version. Select the Compile option under the Run menu to re-
compile the routine before running the newly saved program.

Save As...

Select this option to save the contents of an IDL Editor window to a specified
filename. A file selection dialog box appears.

Revert to Saved

Select this option to discard any changes made in the current window and restore the
last saved version of the file.

Page Setup...

Select this option to define page orientation and other print characteristics for the
currently-selected window.

Print

Select this option to print the contents of the currently-selected IDL window, text
widget, or graphics widget to the currently-active printer.

Preferences

Select this menu item to display a cascading menu of preference options: General,
Graphics, Edit, Startup, Path, Syntax Coloring, Preferences Sets, and Projects.
See “Customizing IDL” on page 175 for more information.
The Menus Using IDL

Chapter 5: The IDL for Macintosh Interface 165
Working Folder...

Select this option to modify the current folder for reading and writing files. Note that
the current folder is searched first when IDL looks for program files.

Quit

Select this option to exit IDL for Macintosh. All IDL Editor windows are closed
before exiting. If text in an Editor window has changed, you are asked if you want to
save it before exiting.

Edit Menu

Undo

Select this option to undo the most recent editing action. If the most recent action is
not undo-able, this option will be shown as Can’t Undo.

Cut

Select this option to cut the currently-selected text from an IDL Editor window or the
IDL Command Input line and place it on the clipboard.

Copy

Select this option to copy the currently-selected text in an IDL Editor window,
Output Log window, or Command Input to the clipboard. Copy also allows you to
copy graphics from an IDL graphics window or draw widget to the clipboard.

Paste

Select this option to paste the contents of the clipboard at the current insertion point.
You can paste into the IDL Command Input and IDL Editor windows, but not the
Output Log window.

Clear

Select this option to delete the currently-selected text. The deleted text is not placed
on the clipboard.

Select All

Use this option to select all of the text in an IDL Editor or Output Log window. The
entire contents of the window are highlighted.

Shift Left

Select this menu item to shift the selected text one tab stop to the left.
Using IDL The Menus

166 Chapter 5: The IDL for Macintosh Interface
Shift Right

Select this menu item to shift the selected text one tab stop to the right.

Comment Line

Select this menu item to insert a semi-colon at the beginning of the line with the
cursor in it. You can also select multiple lines to be commented out by highlighting
them and using this menu item.

Uncomment Line

Select this menu item to remove a semi-colon from the beginning of the line with the
cursor in it. You can also select multiple lines to be uncommented by highlighting
them and using this menu item.

Search Menu

Find...

Select this menu item to search for a text string in the currently-selected IDL Editor
window, Output Log window, or text widget.

Find Again

Select this option to repeat the most recent text search.

Find Selection

Select this menu item to search for occurrences of the currently-selected text in the
currently-selected window.

Enter Selection

Select this menu item to enter the currently-selected text into the Find dialog as the
search string. For example, you can enter the selection and then select Find Again to
find the next occurrence.

Replace...

Select this menu item to search for a text string in the currently-selected IDL Editor
window or text widget and replace it with another text string you specify.

Replace & Find Again

Select this option to repeat the most recent search and replace operation.
The Menus Using IDL

Chapter 5: The IDL for Macintosh Interface 167
Go To Routine Definition

Select this menu item to find and display the definition of the selected IDL library or
user-written routine. The routine must already be compiled.

Go To Line...

Select this option to specify a line on which to locate the cursor in the currently-
selected IDL Editor window or text widget.

You can also use the line number button box at the bottom left of an IDL Editor
window, which displays the number of the line on which the cursor is located. To
relocate the cursor on another line, click in the box and specify the line number in the
Go To Line field.

Run Menu

Run menu items are enabled when an IDL program is loaded into an IDL Editor
window and compiled. See Chapter 18, “Debugging an IDL Program” in Building
IDL Applications for more detailed information.

Note
You must have the Use Debugger option in the IDL General Preferences dialog
checked for the Debug menu to appear.

Compile

Select this option to compile the current editor window from memory. The currently-
selected file is only recognized as an IDL procedure or function if suffixed with
.pro. Selecting this option is the same as entering .COMPILE at the Command
Input line, with the appropriate Editor window selected. See .COMPILE in the IDL
Reference Guide for a more detailed explanation.

Compile from Memory

Select this option to save and compile changes to the current editor window without
affecting the last-saved version of the file. The temporary file created allows you to
experiment without committing changes to the permanent file. Selecting this option is
the same as entering .COMPILE -f at the Command Input Line. See .COMPILE in
the IDL Reference Guide for a more detailed explanation.

Compile All

Select this option to compile all currently open *.pro files.
Using IDL The Menus

168 Chapter 5: The IDL for Macintosh Interface
Run

Select this option to execute the file contained in the currently-active Editor window.
Selecting this option is the same as entering the procedure name at the Command
Input line.

Resolve Dependencies

Select this option to iteratively compile all uncompiled IDL routines that are
referenced in any open and compiled files. Selecting this option is the same as
entering RESOLVE_ALL, /QUIET at the Command Input line. The QUIET keyword
suppresses informational messages. See RESOLVE_ALL in the IDL Reference
Guide for a more detailed explanation.

Profile...

Select this option to start the IDL Code Profiler, which helps you analyze the
performance of your applications. See “The IDL Code Profiler” in Chapter 14 of
Building IDL Applications for more information about the Profiler.

Continue

Select this option to continue a stopped program or start a main-level program from
the beginning. Selecting this option is the same as entering .CONTINUE at the
Command Input line. See .CONTINUE in the IDL Reference Guide for a more
detailed explanation.

Break

Select this option to interrupt program execution. IDL inserts a marker to the left of
the line at which program execution was interrupted.

Clear IDL

Select this option to stop program execution and return to the main program level.
Selecting this item is the same as entering the following at the Command Input line:

RETALL
WIDGET_CONTROL,/RESET
CLOSE, /ALL
HEAP_GC, /VERBOSE

See RETALL, WIDGET_CONTROL, CLOSE, or HEAP_GC in the IDL Reference
Guide for more detailed explanations.
The Menus Using IDL

Chapter 5: The IDL for Macintosh Interface 169
Reset IDL

Select this option to completely reset the IDL session. This option executes
.RESET_SESSION. See the IDL Reference Guide for more information.

Step Over

Select this option to execute a single statement in the current program. The current-
line indicator advances one statement. If the statement which is stepped over calls
another IDL procedure or function, statements from that procedure or function are
executed to the end without interactive capability. Selecting this item is the same as
entering .STEPOVER at the IDL Command Input Line. See .STEPOVER in the IDL
Reference Guide for a more detailed explanation.

Step Into

Select this option to execute a single statement in the current program. The current-
line indicator advances one statement. If the statement which is stepped into calls
another IDL procedure or function, statements from that procedure or function are
executed in order by successive Step commands. Selecting this item is the same as
entering .STEP at the IDL Command Input line. See .STEP in the IDL Reference
Guide for a more detailed explanation.

Step Out

Select this option to continue processing until the current program returns. Selecting
this item is the same as entering .OUT at the IDL Command Input line. See .OUT in
the IDL Reference Guide for a more detailed explanation.

Trace

Select this option to point to program lines as they are executed. Selecting this item is
the same as entering .TRACE at the IDL command prompt. See .TRACE in the IDL
Reference Guide for a more detailed explanation.

Run to Cursor

Select this option to execute statements in the current program up to the line where
the cursor is positioned. Selecting this item is the same as setting a one-time
breakpoint at a specific line. See BREAKPOINT in the IDL Reference Guide for a
more detailed explanation.

Run to Return

Select this option to execute statements in the current procedure or function up to the
line where the return is positioned. Selecting this item is the same as setting a one-
Using IDL The Menus

170 Chapter 5: The IDL for Macintosh Interface
time breakpoint at a specific line. See .RETURN in the IDL Reference Guide for a
more detailed explanation.

Set Breakpoint

Select this option to set a breakpoint on the current line. Selecting this item is the
same as entering the following at the IDL Command Input line:

BREAKPOINT, ['File',] Index

where File is the file to set a breakpoint within, and Index designates the line
number at which the breakpoint is set.

See BREAKPOINT in the IDL Reference Guide for a more detailed explanation.

Disable Breakpoint

Select this option to access disable a breakpoint in the current line.

See Chapter 18, “Debugging an IDL Program” in Building IDL Applications for a
more detailed explanation.

Edit Breakpoints ...

Select this option to access the Edit Breakpoint dialog to set a complex breakpoint.
Complex breakpoints may function only once, or may function only after being hit a
specified number of times. Selecting this item is the same as setting the AFTER and
ONCE keywords for the BREAKPOINT procedure at the IDL Command Input line.

Enter the source file in which to set a breakpoint in the File: field. The default file is
the one in which the cursor is positioned. Click Choose File ... to search through
available directories. Enter the line number at which to place the breakpoint in the
Line: field. The default is the line at which the cursor is currently positioned. You
can also specify how many times the line must be hit in order to interrupt execution.
Click One-Time Breakpoint to interrupt execution after encountering the line for
the first time or click Break After: and enter the number of hits after which
execution should be interrupted into the given field.

See BREAKPOINT in the IDL Reference Guide for a more detailed explanation.

Clear All Breakpoints

Select this option to clear all breakpoints.
The Menus Using IDL

Chapter 5: The IDL for Macintosh Interface 171
List Breakpoints

Select this option to list all breakpoints currently set, in all compiled programs.
Selecting this item is the same as entering HELP, /BREAKPOINTS at the IDL
Command Input line.

List Call Stack

Select this option to display the current nesting of procedures and functions.
Selecting this item is the same as entering HELP, /TRACEBACK at the IDL
Command Input line. See HELP in the IDL Reference Guide for a more detailed
explanation.

Project Menu

For more information on the following menu items, see Chapter 13, “Creating IDL
Projects” in the Building IDL Applications.

Add Window

Select this menu item to add the current file in the Editor window to the current
project.

Add Files...

Selecting this option brings up the Add Files To Project dialog box from which you
can select files to add to the current project.

Remove Selected Items

When an item in the Project window has been selected, it may be removed from the
project by using this option from the Project menu.

Project Options...

Select this option to change the options for a project. The Project Options dialog
displays.

Project Groups...

Selecting this option displays the Project Groups dialog from which you can create
a new group or rename, remove, move up or down, or set to filter specific file types
for the default groups within an IDL Project.

Compile Modified Files

Select this option to compile only the files that have been modified since the last
compile.
Using IDL The Menus

172 Chapter 5: The IDL for Macintosh Interface
Compile All Files

Select this option to compile all the source files in a project.

Build

Select this option to build your project.

Run

Select this option to run the application defined by your project.

Test Interface

Select this item to run the selected GUIBuilder file under test mode.

For more information on running .prc files in test mode, see Running the
Application in Test Mode in the Building IDL Applications manual.

Export...

Select this option to export your project.

Macros Menu

Edit Macros...

Select this item to access the Edit Macros dialog. Macros which have already been
defined are listed in the Macros: field. To edit a macro, click on the macro to access
its characteristics and click SAVE when your adjustments are complete.

Import Image

Select this option to import an image file into IDL. For more information, see “Using
Macros to Import Image Files” on page 193.

Import Ascii

Select this option to import an ASCII file into IDL. For more information, see “Using
Macros to Import ASCII Files” on page 197.

Import Binary

Select this option to import a binary file into IDL. For more information, see “Using
Macros to Import Binary Files” on page 203.

Import HDF

Select this option to import an HDF file into IDL. For more information, see “Using
Macros to Import HDF Files” on page 210.
The Menus Using IDL

Chapter 5: The IDL for Macintosh Interface 173
Demo

Select this option to access IDL’s Demo application.

Window Menu

Stagger

Select this option to stagger all the Output Log and IDL Editor windows on the
desktop.

Tile

Select this option to tile all the Output Log and IDL Editor windows side-by-side on
the desktop.

Command Input Anchored

Select this option to anchor or unanchor the Command Input window pane. If the
window is anchored, a check will appear next to this menu item.

Command Input

Select this menu item to give the Command Input window the input focus.

Output Log

Select this menu item to bring the Output Log to the front.

Variable Watch

Select this option to give the Variable Watch Window the input focus.

Macro Editor

Select this option to bring the Macro Editor to the front.

Profile

Select this option to bring the Profile dialog to the front. See “The IDL Code
Profiler” in Chapter 14 of Building IDL Applications for more information about the
Profiler.

Profile Results

Select this option to bring the Profile Report dialog to the front. See “The IDL Code
Profiler” in Chapter 14 of Building IDL Applications for more information about the
Profiler.
Using IDL The Menus

174 Chapter 5: The IDL for Macintosh Interface
Breakpoints

Select this option to bring the Edit Breakpoint window to the front.

Error Window

Select this option to bring the Error Window to the front.

Open Editor Windows

If any files and/or projects are currently open, they are listed at the bottom of the
Window menu. Select any of these menu items to make that window the current
window and give it the input focus.

Help Menu

The Help menu is located at the far right of the menu bar.

About Balloon Help...

IDL for Macintosh supports balloon help. Select this menu item to learn more about
balloon help.

Show Balloons

Select Show Balloons to activate help balloons. This menu item changes to Hide
Balloons when balloons are enabled.

IDL Online Help

Select this menu item to display the IDL Online Help Viewer.

Help on Selection

Select this menu item to display the help topic in IDL Online Help for the highlighted
item The Index dialog appears if the topic is ambiguous or does not exist.
The Menus Using IDL

Chapter 5: The IDL for Macintosh Interface 175
Customizing IDL

Various defaults for IDL can be customized using the IDL Preferences dialog box.
Select Preferences from the IDL File menu to display a cascading list of preferences.

Select an item from the list to display a Preferences dialog box. Enter new values
and click on OK to use the preferences in the current IDL session. Select the Save
Settings on Exit option (a checkmark appears by the item the next time you select
Preferences) to save the preferences for use with future IDL sessions.

General Preferences

These preferences control the general appearance and behavior of IDL.

Lines to Save in Log Window

Enter the number of lines you wish to save in the IDL Output Log window. By
default, 200 lines are saved.

Figure 5-8: The General Preferences Dialog
Using IDL Customizing IDL

176 Chapter 5: The IDL for Macintosh Interface
Number of Recent Files

Enter the number of files most recently used to be saved for easy access from the
File→Open Recent menu. The default setting is 10 files.

Command Recall Buffer Size

Enter the number of commands to save in the recall buffer. The default setting is 20
commands.

Anchor Command Window

Use this option to select whether you want the IDL Command Input window to be
anchored at the top or bottom of your screen when it is anchored. You can unanchor
the Command Input window by unchecking Command Input Anchored in the
Window menu.

Default Text Formats

These three buttons allow you to set the default font, font size, and tab size to be used
in:

• IDL Editor windows,

• Text and List widgets,

• Buttons, menus, titles, and other widget objects.

Note
To set the text formats for the current window only, select Format from the Edit
Preferences option.

Use Debugger

If this box is checked, the Debug menu appears in the menu bar and the IDL for
Macintosh debugger automatically opens an edit window containing the program
module in question when an error occurs in an IDL program.

Ask to Save Files on Compile

If this box is checked, a query dialog box appears when you try to compile your
program asking if you want to save your file before compiling.

Confirm Quit

If selected, this brings up a Confirm Quit? dialog box before exiting IDL. The
dialog must be accepted before the IDL session can quit.
Customizing IDL Using IDL

Chapter 5: The IDL for Macintosh Interface 177
Change Working Directory on Open

If selected, the working directory path is changed to the selected directory.

Save Command History

This option enables the content of the command buffer to be saved from one launch
to the next of IDL.

Auto Complete Command Line

If checked this option enables IDL to compare commands as they are being typed at
the command line prompt against the commands in the recall buffer. IDL auto
completes the command when a unique match to a previous command is found. This
is particularly useful for commands used quite often, such as Print.

Interpret Unix/DOS Paths

If checked, this enables IDL to correctly interpret the use of UNIX or DOS path
syntax idiosyncrasies.

Save Breakpoints on Quit

If selected, all IDL program breakpoints are saved from session to session until this
check box is deselected. When this option is deselected, all saved breakpoints are
cleared upon exiting IDL.

Confirm reset_session

If selected, a Warning dialog appears upon a reset_session request which lists what
occurs when a session reset is performed. The dialog must be accepted before the
session reset occurs.
Using IDL Customizing IDL

178 Chapter 5: The IDL for Macintosh Interface
Graphics Window Settings

These preferences control defaults for IDL graphics windows.

Number of Colors Used

The number of colors allocated for IDL graphics windows. The default is 220. If your
display supports 256 colors, a maximum of 254 colors can be reserved for IDL (black
and white are reserved for the System).

Default Window Width

The width of IDL graphics windows, in pixels. The default is 1/4 of the total screen
width.

Default Window Height

The height of IDL graphics windows, in pixels. The default is 1/4 of the total screen
height.

Backing Store

This field controls the default for how IDL handles backing store. When backing
store is enabled, IDL keeps a copy of each window in memory. This data is used to
refresh the window when it has been covered and uncovered.

Figure 5-9: The Graphics Preferences Dialog
Customizing IDL Using IDL

Chapter 5: The IDL for Macintosh Interface 179
Change this field to None to disable backing store. Set this field to Pixmap (the
default) to have IDL maintain backing store.

See “Backing Store” in Appendix B of the IDL Reference Guide for more
information.

Startup Depth

This popup menu allows you to specify the color pixel depth you wish to work in,
regardless of the actual depth of your monitor. All operations (saving, printing,
copying to the clipboard, etc.) will be carried out in the depth you select, even if your
monitor does not support that depth.

For example, if you wish to work with 24-bit images but your computer only supports
8-bit video, select 24-bit from the Startup Depth menu. (If you do not select Dither
to Lower Depth Screens, images will not be displayed properly on your monitor.)
Similarly, if you wish to use 8-bit, pseudo-color video even though your machine
supports 24-bit TrueColor, choose 8-bit. Select the screen depth to match the pixel
depth IDL works with to your monitor.

Note
This setting takes effect when IDL is restarted.

Dither to Lower Depth Screens

Check this box to display high pixel-depth images on a lower pixel-depth monitor.
Floyd-Steinberg dithering is used to display, for example, TrueColor images on an 8-
bit-deep screen. This setting takes effect immediately when you click OK—you need
not close and restart IDL.

Size of TrueType Font Cache (in Glyphs)

Enter the number of TrueType characters for which to save triangulation information.
Saving the triangulation information for TrueType characters means that IDL will not
have to calculate the polygons to draw the next time a character of the same font and
size is rendered. Larger values will use more memory but can increase drawing speed
if multiple fonts are used. The default is 256.

Object Graphics Renderer

Select the Native OpenGL Rendering if you have the Apple OpenGL drivers
installed on your system. You can also select Use Hardware Acceleration on ATI
cards.
Using IDL Customizing IDL

180 Chapter 5: The IDL for Macintosh Interface
Note
Because of Apple’s implementation, there are some current limitations to hardware
rendering with Apple drivers. For example, back-face culling and hidden line
removal will not be performed, and there is no Apple support for hardware
rendering in 8-bit. IDL code will support these operations as these limitations are
addressed by Apple.

If your system is set up with multiple monitors, you can also choose to Accelerate
All Monitors.

Note
All monitors must be capable of Hardware Acceleration.

You can also select IDL Software Rendering. See “Window Objects” in Chapter 28
for information about the differences between the two rendering systems.

Hardware Font

Click on this button to bring up the Graphics Hardware Font dialog, which allows
you to specify the font, font size, and style to be used when hardware fonts are
specified for use in IDL graphics windows.

Note
The !P.FONT system variable field must be set equal to zero to use hardware fonts
rather than the default vector fonts.
Customizing IDL Using IDL

Chapter 5: The IDL for Macintosh Interface 181
Edit Preferences

These preferences control the look of the IDL windows.

Window Format

The current window—active window, Command Input, or Output Log—is
reflected in this dialog. You can set the font, the font size, and the tab size. The area
to the right of the pull-down menus shows an example of the settings.

Auto Indent

Check this box to activate auto-indentation as applicable in the current window.

Figure 5-10: Edit Preferences Dialog
Using IDL Customizing IDL

182 Chapter 5: The IDL for Macintosh Interface
Startup Settings

These preferences control the location of the IDL Home Folder and the IDL Startup
File.

Select IDL Main Dir...

The IDL Main Dir is the folder in which IDL was installed. It only needs to be
changed if the executable is moved somewhere else (e.g., to a special applications
folder). Clicking on this button displays a dialog for selecting the folder. The IDL
main directory is displayed below.

Select Startup File

Click this button to specify the name of an IDL batch file to be executed
automatically each time IDL is run. The startup file is displayed below.

Note
Startup files are executed one statement at a time. It is not possible to define
program modules, (procedures, functions, or main-level programs) in the startup
file.

Use No Startup File

Click this button to not have a startup file executed.

Figure 5-11: The Startup Settings Dialog
Customizing IDL Using IDL

Chapter 5: The IDL for Macintosh Interface 183
Path Specifications

This dialog specifies where IDL will look for procedures and functions. To specify a
folder that includes all of that folder’s subfolders, select the entry in the list and click
the Search Subfolders button. A + will be shown in front of the path, indicating that
the folder is to be searched recursively. To change the path specification list, click on
either Add or Remove.

The default path is the IDL folder and all of its subfolders.

Syntax Coloring

This dialog specifies if IDL should use syntax coloring within open editor windows
and in the Command Input line. To change the color associated with a context word,
click on the color box next to each type of word. To disable syntax coloring
altogether, un-check the Use Syntax Coloring check box. To disable syntax coloring

Figure 5-12: The Path Specification Dialog
Using IDL Customizing IDL

184 Chapter 5: The IDL for Macintosh Interface
only within the Command Input line, un-check the Use Syntax Coloring on
Command Line check box.

Setting IDL’s Memory Partition

Running large IDL programs or displaying large images may require more RAM than
is automatically allocated for IDL by the installation program.

In general, the more memory you allocate for IDL, the faster complex programs will
run. Of course, you must balance the size of IDL’s memory partition with the
memory requirements of other applications you use.

To change the memory allocation, first exit IDL. Using the Finder, click on the IDL
icon. Select Get Info from the Macintosh system File menu to bring up the file
information dialog. In the Memory Requirements section of the file information
dialog is a field that reads Preferred Size:. Change the value in this field to reflect
the amount of memory you wish to allocate to IDL, in kilobytes. Close the IDL Info
window when you are finished. When you restart IDL, the new memory allocation
will be in effect.

Message-of-the-Day File

A message-of-the-day file can be used to display the contents of an ASCII text file
each time IDL is run. To create a message-of the-day file for IDL for Macintosh,

Figure 5-13: Syntax Coloring Dialog
Customizing IDL Using IDL

Chapter 5: The IDL for Macintosh Interface 185
simply name the desired text file MOTD.txt or MacOS.txt and place it in the motd
folder in the help folder in the main IDL folder. Note that the MOTD file is simply an
ASCII text file – not an IDL program or batch file. To execute a series of IDL
commands, select a startup file as described under “Startup Settings” on page 182.

If you don’t wish to see the message-of-the-day file each time you start IDL, simply
remove or rename the MacOS.txt or MOTD.txt file.
Using IDL Customizing IDL

186 Chapter 5: The IDL for Macintosh Interface
Macintosh IDL Differences

The Macintosh version of IDL implements most of the functionality of other IDL
versions. There are a number of differences, however, as described below.

Using the Macintosh Mouse with IDL

IDL supports the use of mice with up to three buttons. However, the Macintosh
mouse has only one button. When pressed, the Macintosh mouse button is interpreted
by IDL as the left mouse button. Hold down the Option key while pressing the
mouse button to simulate a middle mouse button press. Hold down the Command
key while pressing the mouse button to simulate a right mouse button press.

Specifying Paths

Many IDL commands accept a partially- or fully-qualified filename (i.e., a filename
and the directory path to that file) as an argument. However, the Macintosh uses a
graphical representation of file folders instead of a directory tree. To solve this
problem, the following syntax is used to specify the location of files and folders:

• Partially- or fully-qualified filenames are specified as a colon-separated list of
drive names and folders.

• Folder and file names can contain spaces and/or commas.

For example, the string to specify the fully-qualified filename of the file
myprogram.pro, located in the folder named Programs which resides on the drive
named Macintosh HD would be:

'Macintosh HD:Programs:myprogram.pro'

• Partially-qualified filenames—filenames specified relative to the current
directory—begin with : (the colon character). For example, to specify the

Mouse Button Key sequence for Macintosh

left mouse button press

middle Option key+mouse button press

right Command key+mouse button press

Table 5-1: Key Sequences for a Macintosh Mouse
Macintosh IDL Differences Using IDL

Chapter 5: The IDL for Macintosh Interface 187
filename of myprogram.pro, located in the folder test, which is located in the
current working folder (whatever that may be), use the following string:

':test:myprogram.pro'

Operating System Commands

Changing the Current Working Directory

To change the current working directory, specify a valid Macintosh path to a folder
(as described in “Specifying Paths” on page 186) with the IDL CD command. For
example, to change the current directory (folder) to the folder Programs, which
resides on a disk called Macintosh HD, enter the command:

IDL> CD, 'Macintosh HD:Programs:'

Other Macintosh operations can change the current directory as well:

• Opening a file with the Open command or by double-clicking on it in the
Finder changes the current directory to the folder where that file resides.

• Saving a file with the Save As command changes the current directory to the
folder where the saved file resides.

• Choosing a new folder using the Working Folder command in the File menu.

Note
The IDL routine DIALOG_PICKFILE does not change the current directory.

File Manipulation

Compiling Programs

Because Macintosh filenames allow spaces, the .RUN, .RNEW, and .COMPILE
executive commands cannot be used to compile multiple programs with a single
command.

For example, on most IDL platforms, the following line compiles three IDL program
files named test, demo, and program:

IDL> .RUN test demo program

However, since Macintosh filenames can have spaces in them, the filenames shown
above would be interpreted as a single filename. In IDL for Macintosh, you can only
specify one filename per .RUN command. For example:

IDL> .RUN Macintosh HD:Programs:test
Using IDL Macintosh IDL Differences

188 Chapter 5: The IDL for Macintosh Interface
Save/Restore Files

SAVE/RESTORE files generated with the Macintosh version of IDL are saved in the
XDR format. This format allows data files saved under UNIX, VMS, Macintosh and
DOS systems to be easily exchanged.

Logical Unit Numbers

The three special file units, 0, –1, and –2, are tied to stdin (the Command Input
line), stdout (the Output Log) and stderr (the Output Log), respectively.

Positioning File Pointers

Under Macintosh, the current file pointer cannot be positioned past the end of the file.

Math Error Handling

Integer divide by zero is always trapped. Integer overflow and underflow are not
detected. Improper floating-point operations are trapped.

Macintosh-Specific File Information

When a file is saved on the Macintosh, it is assigned a file type. Text files saved from
IDL are assigned the type TEXT. Binary files saved from IDL are assigned the type
BIN .

Note
The type code is always four characters long, so the BIN type code includes an
ASCII space character at the end.
Macintosh IDL Differences Using IDL

Part II: Reading
and Writing Data

Chapter 6:

IDL Macros for
Importing Data

This chapter describes the following topics.
Overview . 192
Using Macros to Import Image Files 193
Using Macros to Import ASCII Files 197

Using Macros to Import Binary Files 203
Using Macros to Import HDF Files 210
Using IDL 191

192 Chapter 6: IDL Macros for Importing Data
Overview

IDL contains macros to ease the importing of data into IDL. This chapter introduces
these macros and describes how to import image, ASCII, binary, and Scientific Data
Format (SDF) files. These macros are available through the Macros menu and also
through new IDL Tool Bar buttons.

Figure 6-1: Importing Data Macros Menu (Left) and Tool Bar Buttons (Right)

Import ASCII File Import Binary File

Import HDF
File

Import Image
File
Overview Using IDL

Chapter 6: IDL Macros for Importing Data 193
Using Macros to Import Image Files

To import an image file into IDL, complete the following steps:

1. Select the Import Image File tool bar button. The Select Image File dialog is
displayed.

2. Select a file to import. For example, select the
rsi-directory/examples/data/muscle.jpg file where
rsi-directory is the installation directory for IDL.

You can now see a preview of this image as well as other information about
the file in the lower section of the Select Image File dialog. You can change
the preview to Color, Grayscale, or No Preview. If the image file had more
than one actual image, you can see them using the arrow buttons to scroll
through the images. You can only read in one image of a multi-image file. The
image in the preview is the image that will be read.

3. Click Open.

4. The file has been opened into a structure variable named MUSCLE_IMAGE.

Figure 6-2: Select Image File Dialog
Using IDL Using Macros to Import Image Files

194 Chapter 6: IDL Macros for Importing Data
Images opened with the Import Image File macro are stored in structure variables
which are named filename_IMAGE where filename is the name of the file you
opened without the extension.

Note
IDL variables must begin with a letter, and may contain only letters, digits, the
underscore character, or the dollar sign. If the first character of filename is not a
letter, the prefix “var” is added to the variable name. Any spaces within filename
are converted to underscores. Any other illegal characters within filename are
removed.

So, the file we just opened (muscle.jpg) is now in the structure variable named
MUSCLE_IMAGE. The file is a structure with the following fields:

• IMAGE — The actual image array.

• R — The red color table vectors.

• G — The green color table vectors.

• B — The blue color table vectors.

• QUERY — Contains information about the image.

• CHANNELS — The number of channels in the image.

• HAS_PALETTE — Specifies if the palette is present. 1 if the palette is
present, else 0. If your image is n-by-m the palette is usually present and
the R, G, and B color table vectors mentioned above will contain values. If
your image is 3-by-n-by-m, the palette will not be present and the R,G, and
B color table vectors will not contain any values.

• IMAGE_INDEX — The index of the image of the file. The default is 0,
the first image in the file. If there are multiple images in the file that you
read, this will be the number (or index) of the image.

• NUM_IMAGES — The number of images in the original file.
Using Macros to Import Image Files Using IDL

Chapter 6: IDL Macros for Importing Data 195
• PIXEL_TYPE — The IDL Type Code of the image pixel format. Valid
types are:

• TYPE — The image type. Valid return values are:

BMP, JPEG, PNG, PPM, SRF, TIFF, DICOM

The structure can be viewed in the Variable Watch Window.

PIXEL_TYPE returned Data Types

1 Byte

2 Integer

3 Longword Integer

4 Floating Point

5 Double-precision Floating Point

12 Unsigned Integer

13 Unsigned Longword Integer

14 64-bit Integer

15 Unsigned 64-bit Integer

Table 6-1: Values for PIXEL_TYPE in the Structure

Figure 6-3: Variable Watch Window Showing MUSCLE_IMAGE Structure
Using IDL Using Macros to Import Image Files

196 Chapter 6: IDL Macros for Importing Data
You can specify which part of the structure variable you want to access by using the
following syntax:

variable_name.element_name[.element_name]

For example, if you want to view the image, enter the following:

TV, MUSCLE_IMAGE.IMAGE

This displays the following image:

If you want to know the file type, enter the following:

PRINT, MUSCLE_IMAGE.QUERY.TYPE

IDL prints:

JPEG

Figure 6-4: MUSCLE_IMAGE.IMAGE
Using Macros to Import Image Files Using IDL

Chapter 6: IDL Macros for Importing Data 197
Using Macros to Import ASCII Files

To import an ASCII file into IDL, complete the following steps:

1. Select the Import ASCII File tool bar button. The Select an ASCII file to
read dialog displays.

2. Select a file to import. For example, select the
rsi-directory/examples/data/ascii.txt file where
rsi-directory is the installation directory for IDL. Click Open.

3. In the Define Data Type/Range dialog, you specify information about your
file. The first few lines of the file are displayed to help you find the
information you need to specify.

First, select the type of field which best describes your data. You can either
choose Fixed Width which specifies that the data is aligned in columns, or
Delimited which specifies that the data is separated by commas, whitespace,
etc. In this example, the data is delimited by commas so we’ll select the
Delimited radio button.

Next, enter a character or string that is used to comment lines within the file in
the Comment String to Ignore: field. In this example, if we read the first few
lines of this file, it defines the % character as the comment character. Enter the
% sign in the Comment String to Ignore: field.

Figure 6-5: Select an ASCII file to read Dialog
Using IDL Using Macros to Import ASCII Files

198 Chapter 6: IDL Macros for Importing Data
Next, enter the line number in which the data starts in the Data Starts at Line:
field. In this example, the data starts on line 6 so we’ll enter that value in the
field.

Click Next.

4. In the Define Delimiter/Fields dialog, we’ll specify the information about the
actual data in the file.

First, we’ll enter the number of columns or fields in the Number of Fields Per
Line: field. In this example, there are 7 fields.

Next, we’ll enter the how the data is delimited. You can choose White Space,
Comma, Colon, Semicolon, Tab, or Other. If you specify Other, you must
then enter the characters in the field. In this example, we’ll select Comma
since the data is delimited by commas.

Figure 6-6: Define Data Type/Range Dialog
Using Macros to Import ASCII Files Using IDL

Chapter 6: IDL Macros for Importing Data 199
Click Next.

5. In the Field Specification dialog, we’ll enter information about the contents of
each column or field in the data.

First, select the first field in the data in the box in the upper left of the dialog.
Enter the name of the field in the Name field and the type of data represented
in the Type field. In this example we’ll specify Longitude and Floating for
the fields. Continue naming all the fields in the data using this procedure. In
this example, we’ll use Latitude – Floating; Elevation – Long; Temperature –
Long; DewPoint – Long; WindSpeed – Long; WindDir – Long for the other
field pairs.

You can also group some or all of the fields into one field by using the Group
or Group All buttons. In this example, there is no need to group any of the
fields.

Figure 6-7: Define Delimiter/Fields Dialog
Using IDL Using Macros to Import ASCII Files

200 Chapter 6: IDL Macros for Importing Data
Next, select the value to assign missing data. You can select the IEEE standard
for NaN or a custom value. In this example, we’ll choose IEEE NaN.

6. Click Finish.

ASCII files opened with the Import ASCII File macro are stored in structure
variables which are named filename_ASCII where filename is the name of the file
you opened without the extension.

Note
IDL variables must begin with a letter, and may contain only letters, digits, the
underscore character, or the dollar sign. If the first character of filename is not a
letter, the prefix “var” is added to the variable name. Any spaces within filename
are converted to underscores. Any other illegal characters within filename are
removed.

Figure 6-8: Field Specification Dialog
Using Macros to Import ASCII Files Using IDL

Chapter 6: IDL Macros for Importing Data 201
So, the file we just opened (ascii.txt) is now in the structure variable named
ASCII_ASCII. The variable is a structure with each field name being an element of
the structure.

The structure can be viewed in the Variable Watch Window.

You can specify which part of the structure variable you want to access by using the
following syntax:

variable_name.element_name

For example, if you want to view the Longitude field, enter the following:

Print, ASCII_ASCII.LONGITUDE

IDL prints:

-156.950 -116.967 -104.255 -114.522 -106.942
-94.7500 -73.6063 -117.176 -116.093 -106.372
-93.2237 -109.635 -76.0225 -93.1535 -118.721

If you want to plot Temperature, enter the following:

PLOT, ASCII_ASCII.TEMPERATURE

Figure 6-9: Variable Watch Window Showing ASCII_ASCII Structure
Using IDL Using Macros to Import ASCII Files

202 Chapter 6: IDL Macros for Importing Data
The following figure results.

Figure 6-10: Plot of ASCII_ASCII.TEMPERATURE
Using Macros to Import ASCII Files Using IDL

Chapter 6: IDL Macros for Importing Data 203
Using Macros to Import Binary Files

Sometimes, data is stored in files as arrays of bytes instead of a known format like
JPEG or TIFF. These files are referred to as binary files.

Note
The Import Binary File macro is intended for use in loading raw binary data from
files into IDL. Such data is comprised of bits that are meaningful — as integers or
floating-point numbers for example — with no special processing (except possibly
byte-order swapping) required. Commercial spreadsheet or word processing files,
for example, are binary but they are not raw in the above sense, and thus are not
good candidates for use with this macro.

Also note that the Import Binary File macro is intended for use in loading data
from files the contents of which you have some knowledge about. To effectively
read data with this macro, you must be able to supply literal values or expressions
that specify the type and location of the data in the file you wish to read.

To import a binary file into IDL, complete the following steps:

1. Select the Import Binary File tool bar button. The Select a binary file to
read dialog is displayed.

2. Select a file to import. For example, select the
rsi-directory/examples/data/surface.dat file where
rsi-directory is the installation directory for IDL. Click Open.

Figure 6-11: Select a binary file to read Dialog
Using IDL Using Macros to Import Binary Files

204 Chapter 6: IDL Macros for Importing Data
3. In the Binary Template dialog box, specify information about your file.

First, enter the name of the template you are going to create in the Template
name: field. For this example, “marbellstemplate” is used.

Next, select the byte order in the file in the File’s byte ordering: pull-down
menu. The choices are:

• Native — The type of storage method that is native to the machine you are
currently running. Little Endian for Intel microprocessor-based machines
and Big Endian for Motorola microprocessor-based machines. No byte
swapping will be performed.

• Little Endian — A method of storing numbers so that the least significant
byte appears first in the number. For example, given the hexadecimal
number A02B, the little endian method specifies the number to be stored
as 2BA0. Specify this if the original file was created on a machine that
uses an Intel microprocessor.

• Big Endian — A method of storing numbers so that the most significant
byte appears first in the number. For example, given the hexadecimal
number A02B, the big endian method specifies the number to be stored as
A02B. Specify this if the original file was created on a machine that uses a
Motorola microprocessor.

The file surface.dat was created on a machine that uses an Intel
microprocessor. For this example, select Little Endian for the byte order.

Figure 6-12: The Binary Template dialog
Using Macros to Import Binary Files Using IDL

Chapter 6: IDL Macros for Importing Data 205
4. Now we are ready to enter the field values for the file. You can have multiple
fields within a binary file. Click the New Field... button in the lower-left
corner of the Binary Template dialog box.

In the New Field dialog (shown at the end of these example steps), enter the
name of the field in the Field name: text box. In this example, enter “A” as the
field name.

Next, you need to specify where in the file to start reading. The options are:

• Offset — Specifies the byte offset or where to begin reading the file. This
is always a decimal integer unless the Allow an expression for the offset
checkbox is checked. The > symbol specifies to offset forward from a byte
position, the < symbol specifies to offset backward from a byte position.

• From beginning of file — Specifies to start reading this field starting with
the first byte of the file plus any Offset specified.

• From initial position in file/From end of previous field — This field
changes depending upon if this is the first field or any other field besides
the first. If this is the first field you are defining, this option specifies to
read from the beginning of the file plus any Offset specified. If this is not
the first field, this option changes to From end of previous field and
specifies to begin reading the field where the previous field ended plus any
Offset specified.

• Allow an expression for the Offset — If this is checked, you can enter
any valid IDL expression in the Offset field. You can use any previously
defined field in the expression.

In this example, since this is the first field in the file and we don’t have any
header information in the file, specify From the beginning of file without any
offset.

Next, select whether or not you want this field to be returned to IDL when a
file is read. For example, you may have a section of your binary file that
contains header information. If you create a field for this section, you do not
want it returned to IDL. In this case, you would not select Returned in the
result. You must specify at least one field to be returned to IDL. In this
example, we want to return the field we’re creating so we’ll check the box in
the upper-right corner marked Returned in the result.

Next, you need to specify whether or not you want to verify any of the data you
are returning in the Verified equal to field. This field is only available if the
Using IDL Using Macros to Import Binary Files

206 Chapter 6: IDL Macros for Importing Data
field is a scalar. This can be any valid IDL expression that evaluates to a scalar.
For this example, we won’t verify any of the data.

Next, you need to specify the type of data that is in this field. In this example,
the data is integer type data so select the Integer (16 bits) at the Type pull-
down menu. The valid values for Type are:

• Byte (unsigned 8-bits)

• Integer (16-bits)

• Long (32-bits)

• Long64 (64 bits)

• Float (32 bits)

• Double-Precision (64-bits)

• Unsigned Integer (16 bits)

• Unsigned Long (32-bits)

• Unsigned Long64 (64-bits)

• Complex (real-imaginary pair of floats)

• Double-Precision Complex (pair of doubles)

Next, specify the number of dimensions contained in the data in the Number
of dimensions: pull-down menu. This will activate a corresponding number of
boxes in the dimensions section of the dialog. In this example, the data is two-
dimensional.

Finally, enter the size of each dimension in the field. If you select the Allow
expressions for dimension sizes check box, you enter any valid IDL
expression that returns the size of the dimension. You can also choose to
reverse the order of the data by selecting the Reverse check box for each
dimension. This can be useful when image data is returned in the reverse order
and appears upside down. In this example, the data is contained in a 350-by-
450 array, so enter 350 for the size of the 1st dimension and 450 for the size of
the 2nd dimension in the text fields marked Size:.
Using Macros to Import Binary Files Using IDL

Chapter 6: IDL Macros for Importing Data 207
Click OK.

5. You can now see the information that you entered in the Binary Template
dialog. If you need to enter more fields, select the New Field button. Repeat
the steps until you have entered all the fields in the binary file.

In this example, there is only one field. Click OK.

Binary files opened with the Import Binary File macro are stored in structure
variables which are named filename_BINARY where filename is the name of the file
you opened without the extension.

Note
IDL variables must begin with a letter, and may contain only letters, digits, the
underscore character, or the dollar sign. If the first character of filename is not a
letter, the prefix “var” is added to the variable name. Any spaces within filename

Figure 6-13: Modifying fields in Binary Template
Using IDL Using Macros to Import Binary Files

208 Chapter 6: IDL Macros for Importing Data
are converted to underscores. Any other illegal characters within filename are
removed.

So, the file we just opened (surface.dat) is now in the structure variable named
SURFACE_BINARY. The variable is a structure with each field name being an
element of the structure.

The structure can be viewed in the Variable Watch Window.

You can specify which part of the structure variable you want to access by using the
following syntax:

variable_name.element_name

For example, display the image by entering:

TVSCL, SURFACE_BINARY.A

Figure 6-14: Variable Watch Window Showing MARBELLS_BINARY Structure
Using Macros to Import Binary Files Using IDL

Chapter 6: IDL Macros for Importing Data 209
Figure 6-15: Surface.dat displayed using TVSCL
Using IDL Using Macros to Import Binary Files

210 Chapter 6: IDL Macros for Importing Data
Using Macros to Import HDF Files

To import a Hierarchical Data Format (HDF), HDF-EOS, or NETCDF file into IDL,
complete the following steps:

1. Select the Import HDF File tool bar button. The Select a valid HDF,
NETCDF or HDF-EOS file dialog is displayed.

2. Select a file to import. Click Open.

3. The HDF Browser window is displayed (shown at the end of these example
steps). In the HDF Browser window, select the data in the file you want to
import into IDL.

In the Display pull-down menu, select the type of file you are reading. The two
options are:

• HDF/NETCDF

• HDF-EOS

Figure 6-16: Select a valid HDF, NETCDF or HDF-EOS file Dialog
Using Macros to Import HDF Files Using IDL

Chapter 6: IDL Macros for Importing Data 211
Next, select the type of data you want to import. The following tables describe
the options available for the two display choices from the pull-down menu.

Once you have selected the type of data, information is displayed that shows
the different elements of data available in the file you are opening. For
example, if it is an image file, you will see the names of the images displayed.
Select the item to import.

If you have selected an image, 2D data set, or 3-by-n-by-m data set from the
pull-down menu, you can click on the Preview button to view the image. If

Menu Selection Description

HDF/NetCDF Summary

DF24 (24-bit Images) 24-bit images and their attributes

DFR8 (8-bit Images) 8-bit images and their attributes

DFP (Palettes) Image palettes

SD (Variables/Attributes) Scientific Datasets and attributes

AN (Annotations) Annotations

GR (Generic Raster) Images

GR Global (File) Attributes Image attributes

VGroups Generic data groups

VData Generic data and attributes

Table 6-2: Menu Options for HDF/NetCDF Data Types

Menu Selection Description

HDF-EOS Summary

Point EOS point data and attributes

Swath EOS swath data and attributes

Grid EOS grid data and attributes

Table 6-3: Menu Options for HDF-EOS Data Types
Using IDL Using Macros to Import HDF Files

212 Chapter 6: IDL Macros for Importing Data
you have selected a data item that can be plotted in two dimensions, click on
the Preview button to view a 2D plot of the data (the default); or click on the
Preview Surface radio button to display a surface plot; click on the Preview
Contour radio button to display a contour plot; or click on the Preview Show3
radio button for an image, surface, and contour display. You can also select the
Fit to Window check box to fit the image to the window.

Next, if you want the data or metadata item you are previewing to be imported
into IDL, select the Read check box to extract the current data or metadata
item from the HDF file.

Next, specify a name for the extracted data or metadata item.

Note
The Read check box must be selected for the item to be extracted. Default names
are generated for all data items, but may be changed at any time by the user.

4. Continue selecting to read and name the data or metadata items you want to
import into IDL.

5. Click OK.

Figure 6-17: HDF Browser Window
Using Macros to Import HDF Files Using IDL

Chapter 6: IDL Macros for Importing Data 213
HDF, NETCDF, or HDF-EOS files read with the Import Binary File macro are
stored in structure variables which are named filename_DF where filename is the
name of the file you opened without the extension.

Note
IDL variables must begin with a letter, and may contain only letters, digits, the
underscore character, or the dollar sign. If the first character of filename is not a
letter, the prefix “var” is added to the variable name. Any spaces within filename
are converted to underscores. Any other illegal characters within filename are
removed.

The variable is a structure with each data or metadata name being an element of the
structure. You can specify which part of the structure variable you want to access by
using the following syntax:

variable_name.data_name

For example, if you imported two data elements out of a file named hydrogen.hdf and
you named the elements IMAGE1 and IMAGE2, you could access each individual
data element using the following:

HYDROGEN_DF.IMAGE1

HYDROGEN_DF.IMAGE2

If you wanted to view IMAGE1, you would enter:

TV, HYDTROGEN_DF.IMAGE1

For more information on IDL support of HDF and other scientific data formats, see
the Scientific Data Formats manual.
Using IDL Using Macros to Import HDF Files

214 Chapter 6: IDL Macros for Importing Data
Using Macros to Import HDF Files Using IDL

Chapter 7:

Reading and Writing
Images

This chapter provides an introduction to reading and writing image data using the latest commands
and user interfaces found in IDL.
List of Commands 216
Accessing Image Files Using Dialogs . . . 219
Accessing General Image File Formats . . 223

Accessing Specific Image File Formats . . . 224
Accessing Files Using Dialogs 226
Accessing Files With Compound Widgets 228
Using IDL 215

216 Chapter 7: Reading and Writing Images
List of Commands

The following routines are used for reading and writing image data. These IDL
routines provide access to specialized functionality in the case of more specific
applications.

Compound Widgets and Dialogs

Images (Generalized)

Images (Specific Formats)

CW_FILESEL A compound widget for file selection.

DIALOG_PICKFILE Allows the user to interactively pick a file, or
multiple files, using the platform's own native
graphical file-selection dialog.

DIALOG_READ_IMAGE A graphical user interface used for reading
image files.

DIALOG_WRITE_IMAGE A graphical user interface used for writing
image files.

QUERY_IMAGE Reads the header of a file and determines if it is
recognized as an image file.

READ_IMAGE Reads the image contents of a file and returns the
image in an IDL variable.

WRITE_IMAGE Writes an image and its color table vectors, if any, to a
file of a specified type.

QUERY_BMP Obtains information about a BMP image file without
having to read the image.

QUERY_DICOM Tests a file for compatibility with READ_DICOM and
returns an optional structure containing information
about images in the DICOM file.

QUERY_JPEG Obtains information about a JPEG image file without
having to read the image.
List of Commands Using IDL

Chapter 7: Reading and Writing Images 217
QUERY_PICT Obtains information about a PICT image file without
having to read the image.

QUERY_PNG Obtains information about a PNG image file without
having to read the image.

QUERY_PPM Obtains information about a PPM image file without
having to read the image.

QUERY_SRF Obtains information about a SRF image file without
having to read the image.

QUERY_TIFF Obtains information about a TIFF image file without
having to read the image.

READ_BMP Reads a Microsoft Windows Version 3 device
independent bitmap image (.bmp) and returns a byte
array containing the image.

READ_DICOM Reads an image from a DICOM file along with any
associated color table.

READ_INTERFILE Reads image data stored in Interfile (v3.3) format and
returns a 3D array.

READ_JPEG Reads JPEG (Joint Photographic Experts Group)
format compressed images from files or memory.

READ_PICT Reads the contents of a PICT (version 2) format image
file and returns the image and color table vectors (if
present).

READ_PNG Reads the image contents of a Portable Network
Graphics (PNG) image file.

READ_PPM Reads the contents of a PGM (gray scale) or PPM
(portable pixmap for color) format image file and
returns the image in the form of a 2D byte array (for
gray scale images) or a (3, n, m) byte array (for
TrueColor images).

READ_SRF Reads the contents of a Sun rasterfile and returns the
image and color table vectors (if present).

READ_TIFF Reads multi channel image TIFF format files and
returns the image and color table vectors.
Using IDL List of Commands

218 Chapter 7: Reading and Writing Images
READ_X11_BITMAP Reads bitmaps stored in the X Windows X11 bitmap
format.

READ_XWD Reads the contents of a file created by the xwd (X
Windows Dump) command and returns the image and
color table vectors.

WRITE_BMP Writes an image and its color table vectors to a
Microsoft Windows Version 3 device independent
bitmap file (.bmp).

WRITE_JPEG Writes compressed images to a JPEG (Joint
Photographic Experts Group) file which is a
standardized compression method for full-color and
gray-scale images.

WRITE_NRIF Writes an image and its color table vectors to an
NCAR Raster Interchange Format (NRIF) rasterfile.

WRITE_PICT Writes and image and its color table vectors to a PICT
(version 2) format image file.

WRITE_PNG Writes a 2D or 3D IDL variable into a Portable
Network Graphics (PNG) image file.

WRITE_PPM Writes an image to a PPM (TrueColor) or PGM (gray-
scale) image file.

WRITE_SRF Writes an image and its color table vectors to a Sun
Raster File (SRF) image file.

WRITE_TIFF Writes an image and its color table vectors to a Tagged
Image Format (TIFF) image file.
List of Commands Using IDL

Chapter 7: Reading and Writing Images 219
Accessing Image Files Using Dialogs

Selecting an Image File

The DIALOG_READ_IMAGE function is a graphical user interface which is used for
reading image files. This interface simplifies the use of IDL image file I/O. Users are
able to preview images with a quick and simple browsing mechanism which will also
report important information about the image file. The user has the option to view the
image in color, grayscale, or no preview.

Result = DIALOG_READ_IMAGE()

Figure 7-1: The DIALOG_READ_IMAGE dialog
Using IDL Accessing Image Files Using Dialogs

220 Chapter 7: Reading and Writing Images
Button Function

Open Opens the selected image file.

Cancel Cancels the current image selection.

Arrow Keys Pages through multiple images in the file.

Table 7-1: Save Image File Buttons
Accessing Image Files Using Dialogs Using IDL

Chapter 7: Reading and Writing Images 221
Saving an Image File

The DIALOG_WRITE_IMAGE function is a graphical user interface which is used
for writing/saving image files. This interface simplifies the use of IDL image file I/O.

myimage = DIST(100)
result = DIALOG_WRITE_IMAGE(myimage, FILENAME='myimage.tif')

Figure 7-2: The DIALOG_WRITE_IMAGE dialog

Button Function

Save Saves the image file.

Cancel Cancels the save function.

Options Brings up a dialog box of image format save options.

Table 7-2: Save Image File Dialog Buttons
Using IDL Accessing Image Files Using Dialogs

222 Chapter 7: Reading and Writing Images
Figure 7-3: Image Options
Accessing Image Files Using Dialogs Using IDL

Chapter 7: Reading and Writing Images 223
Accessing General Image File Formats

Querying an Image File

The QUERY_IMAGE function reads the header of an image file and determines if it
is recognized as an image file. If it is an image file, an optional structure containing
the information about the image is returned. The Info structure for all image types has
the following fields:

Reading an Image File

The READ_IMAGE function reads the image contents of a file and returns the image
in an IDL variable.

Writing an Image File

The WRITE_IMAGE function writes an image and its color table vectors to a file of
a specified type. The WRITE_IMAGE function can write most types of image files.

Tag Definition

CHANNELS Long

DIMENSIONS One-dimensional long array

FILENAME Scalar string

HAS_PALETTE Integer

IMAGE_INDEX Long

NUM_IMAGES Long

PIXEL_TYPE Integer

TYPE Scalar string

Table 7-3: Info Structure for Images
Using IDL Accessing General Image File Formats

224 Chapter 7: Reading and Writing Images
Accessing Specific Image File Formats

QUERY_* Routines

IDL has added a consistent set of query routines to the existing IDL image file format
API to allow users to obtain information about files without having to read them into
memory.

All of the QUERY_ routines return a status, which determines if the file is appropriate
to use the corresponding READ_ routine. In addition, these routines return an
anonymous structure containing all of the available information for that image format,
such as the image dimensions, number of samples per pixel, pixel type, palette info,
and the number of images in the file. The following is a list of the current QUERY_
routines:

READ_* Routines

IDL includes a number of routines for reading standard graphics file formats.These
routines read the image file format and returns the image and color table vectors (if
present). The following is a list of the current READ_ routines:

QUERY_BMP QUERY_PNG

QUERY_DICOM QUERY_PPM

QUERY_JPEG QUERY_SRF

QUERY_PICT QUERY_TIFF

READ_BMP READ_PNG

READ_DICOM READ_PPM

READ_JPEG READ_SRF

READ_PICT READ_TIFF
Accessing Specific Image File Formats Using IDL

Chapter 7: Reading and Writing Images 225
WRITE_* Routines

IDL has added a consistent set of write routines to the existing IDL image file format
functions to allow users to write an image and its color table vectors to a file of a
specified type. The following is a list of the current WRITE_ routines:

WRITE_BMP WRITE_PNG

WRITE_DICOM WRITE_PPM

WRITE_JPEG WRITE_SRF

WRITE_PICT WRITE_TIFF
Using IDL Accessing Specific Image File Formats

226 Chapter 7: Reading and Writing Images
Accessing Files Using Dialogs

File Selection

The DIALOG_PICKFILE function allows the user to interactively pick a file using
the platform’s own native graphical file selection dialog. The user can also enter the
name of the file.

Directory Selection

The DIRECTORY keyword allows the user to select a directory rather than a file
name with the DIALOG_PICKFILE function. See DIALOG_PICKFILE in the IDL
Reference Guide for details.

Result = DIALOG_PICKFILE()

Multiple File Selection

The MULTIPLE_FILES keyword allows multiple file selection in the dialog. When
this keyword is set, the user can select multiple files using the platform-specific
selection method and DIALOG_PICKFILE can return a string or an array of strings
that contains the full path name of the selected file or files.

Figure 7-4: DIALOG_PICKFILE
Accessing Files Using Dialogs Using IDL

Chapter 7: Reading and Writing Images 227
Result = DIALOG_PICKFILE(/MULTIPLE_FILES)

Figure 7-5: MULTIPLE_FILES Selection
Using IDL Accessing Files Using Dialogs

228 Chapter 7: Reading and Writing Images
Accessing Files With Compound Widgets

Selecting a File

The CW_FILESEL is a compound widget which can be used in a component fashion
as well as adding multiple file filter selection. The following example illustrates how
CW_FILESEL could be used to create a widget for opening image files:

PRO image_opener_event, event

 WIDGET_CONTROL, event.top, GET_UVALUE=state, /NO_COPY

 CASE event.DONE OF
 0: BEGIN
 state.file = event.VALUE
 WIDGET_CONTROL, event.top, SET_UVALUE=state, /NO_COPY
 END
 1: BEGIN
 IF (state.file NE '') THEN BEGIN
 img = READ_IMAGE(state.file)
 TV, img
 ENDIF
 WIDGET_CONTROL, event.top, SET_UVALUE=state, /NO_COPY
 END
 2: WIDGET_CONTROL, event.top, /DESTROY
 ENDCASE

END

PRO image_opener

 DEVICE, DECOMPOSED=0, RETAIN=2

 base = WIDGET_BASE(TITLE ='Open Image', /COLUMN)
 filesel = CW_FILESEL(base, /IMAGE_FILTER, FILTER='All Files')
 file=''
 state = {file:file}

 WIDGET_CONTROL, base, /REALIZE
 WIDGET_CONTROL, base, SET_UVALUE=state, /NO_COPY

 XMANAGER, 'image_opener', base

END
Accessing Files With Compound Widgets Using IDL

Chapter 7: Reading and Writing Images 229
This code opens the following dialog:

Figure 7-6: CW_FILESEL
Using IDL Accessing Files With Compound Widgets

230 Chapter 7: Reading and Writing Images
Accessing Files With Compound Widgets Using IDL

Chapter 8:

Reading and Writing
ASCII Data

This chapter provides an introduction to reading and writing ASCII data using the commands and
user interfaces found in IDL.
Overview . 232
Reading an ASCII Data File 233

Advanced File Input/Output 237
Using IDL 231

232 Chapter 8: Reading and Writing ASCII Data
Overview

IDL recognizes two types of ASCII data files: free format files, and explicit format
files. A free format file uses commas or tabs and spaces to distinguish each element
in the file. An explicit format file distinguishes elements according to the commands
specified in a format statement.
Overview Using IDL

Chapter 8: Reading and Writing ASCII Data 233
Reading an ASCII Data File

Most ASCII files are free format files. IDL uses three commands for reading ASCII
data files: READ, READF, and READS. The READ procedure reads free format
data from standard input, READF reads free format data from a file, and READS
reads free format data from a string variable.

Using the ASCII_TEMPLATE Function

The ASCII_TEMPLATE function generates a template defining an ASCII file
format. In this example, two routines are used to input an ASCII data file into IDL.
The first routine, ASCII_TEMPLATE, is a widget program which allows the user to
describe the data organization of the file. This routine creates a template which is
used to read the data file, according to the template specifications, by the second
routine called READ_ASCII. The template is an IDL variable that can be reused by
other files with the same organization. The following example creates a template for
an ASCII file using the ASCII_TEMPLATE function.

template = ascii_template()

This command assigns the description of the data to a variable named template. IDL
will display a dialog box which prompts the user to select a file.

Note
If a filename is specified in the parentheses after the ASCII_TEMPLATE function,
this screen will not appear.

Figure 8-1: File Selection Dialog Box
Using IDL Reading an ASCII Data File

234 Chapter 8: Reading and Writing ASCII Data
Once a file has been selected, IDL displays the first of three pages of the
ASCII_TEMPLATE dialog.

The first page displays a representative sample of lines from the data file with their
numbers on the left. Select the field type that best describes the data. Click the Next
button on the bottom-right corner of the screen to move to the next page.

Figure 8-2: ASCII Template - Define Data Type / Range
Reading an ASCII Data File Using IDL

Chapter 8: Reading and Writing ASCII Data 235
The second page displays the number of fields per line which is listed as three and the
white space is selected for the data delimiter. Click the Next button on the bottom
right corner of the screen to move to the next page.

Figure 8-3: ASCII Template - Define Delimiter / Fields
Using IDL Reading an ASCII Data File

236 Chapter 8: Reading and Writing ASCII Data
The third page displays the columns in the data set which can be named and their data
type specified. Name the fields by typing in the name text at the upper right of the
form. Click the Finish button on the bottom-right corner of the screen.

The result is an IDL structure variable that describes the data in the file and can be
used as input to the READ_ASCII command.

Figure 8-4: ASCII Template - Field Specification
Reading an ASCII Data File Using IDL

Chapter 8: Reading and Writing ASCII Data 237
Advanced File Input/Output

For information on more advanced file I/O capabilities, see Chapter 8, “Files and
Input/Output” in the Building IDL Applications manual.
Using IDL Advanced File Input/Output

238 Chapter 8: Reading and Writing ASCII Data
Advanced File Input/Output Using IDL

Chapter 9:

Reading and Writing
Binary Data

This chapter provides an introduction to reading and writing binary data using the commands and
user interfaces found in IDL.
Overview . 240
Reading a Binary Data File 241

Advanced File Input/Output 245
Using IDL 239

240 Chapter 9: Reading and Writing Binary Data
Overview

Binary data or binary data files are more compact than ASCII data files and are
frequently used for large data files. Binary data files are stored as one long stream of
bytes in a file.
Overview Using IDL

Chapter 9: Reading and Writing Binary Data 241
Reading a Binary Data File

To read binary data files, define the variables, open the file for reading, and read the
bytes into those variables with the READU command. Each variable reads as many
bytes out of the file as required by the specified data type and organizational
structure.

Using the BINARY_TEMPLATE Function

A binary template serves as a description of the format of the data in a binary file. A
single template can be re-used for all binary files that are organized in the same way.
The template specifies user defined fields and file byte order.

The byte order in the file is selected using the Binary Template dialog using the
File’s byte ordering: pull-down menu. The choices are:

• Native — The type of storage method that is native to the machine you are
currently running. Little Endian for Intel microprocessor-based machines and
Big Endian for Motorola microprocessor-based machines. No byte swapping
will be performed.

• Little Endian — A method of storing numbers so that the least significant
byte appears first in the number. For example, given the hexadecimal number
A02B, the little endian method specifies the number to be stored as 2BA0.
Specify this if the original file was created on a machine that uses an Intel
microprocessor.

• Big Endian — A method of storing numbers so that the most significant byte
appears first in the number. For example, given the hexadecimal number
A02B, the big endian method specifies the number to be stored as A02B.
Specify this if the original file was created on a machine that uses a Motorola
microprocessor.

Each field has a name and an offset. Offsets can be expressed in IDL syntax
expressions, including hex-literal values or expressions involving previously defined
fields. When READ_BINARY is called with a template, the resulting fields are
assigned values as the target file is processed. Template-specified fields are returned
in an anonymous structure from a call to READ_BINARY.

Fields can also be read but not returned from READ_BINARY. These fields can be
used in expressions when defining other fields, or used to specify values which must
be matched for the read to be valid (Verify fields). A field offset can be either
absolute or relative.
Using IDL Reading a Binary Data File

242 Chapter 9: Reading and Writing Binary Data
An absolute offset specifies a fixed location (in bytes) from the beginning of the file
(or the initial file position for an externally opened file).

A relative offset specifies a position relative to the current file position pointer after
the previous field (if any) is read. Relative offsets are shown in the
BINARY_TEMPLATE user interface with a preceding > or < character, to indicate a
positive (>) or negative (<) byte offset.

The following example creates a template for a binary file using the
BINARY_TEMPLATE function. The following command invokes the binary
template dialog.

Result = BINARY_TEMPLATE (filename)

The binary template dialog box appears and a template for reading a binary file has
now been generated. In the Template Name field, enter the name of the new
template.

Note
The template name is optional, this field can be left blank.

Fields are read in the order in which they are listed in the main dialog for
BINARY_TEMPLATE with offsets being added to the current file position pointer
before each field is read. Offsets may be specified via expressions or literals. The
user checks a checkbox to allow the input of expressions, if an expression is needed.
Literals are unsigned decimal integers. Expressions can be any legal IDL syntax. If
the user desires to enter a hex value, they can do so by entering it as an expression.

Figure 9-1: Binary Template
Reading a Binary Data File Using IDL

Chapter 9: Reading and Writing Binary Data 243
Also, an expression may use any previously read field as a variable in an IDL
expression.

The Type of each Template-specified field is selected from a droplist or specified via
an expression which yields an IDL type code (the type code is also generated via an
expression which can be a function of any previously read fields). The droplist offers
the following IDL types: byte, integer, long, float, double, complex, dcomplex, uint,
ulong, long64 and ulong64. Strings are read as an array of bytes for later conversion
to type STRING.

The number of dimensions of a field can be set via a droplist of values 0 (scalar) to 8
(which is the maximum number of dimensions that an IDL variable can have.)
Alternately, the size of each dimension can be an expression, which would allow the
dimensions of a field to be determined at file-read time.

Any of the first three dimensions of array data can also be specified to be reversed in
order. A Verify field can be any valid IDL expression. Only scalar fields can be
verified. This template can be saved to disk for later access, used to guide
READ_BINARY or passed back to BINARY_TEMPLATE for further editing.

The field name can be any name the user chooses. It does not have to be the template
name. The Number of Dimensions is a pull-down menu. In the two boxes marked
Size, enter the size of the array. Specify the type of data in the Type field.

Figure 9-2: Binary Template - New Field
Using IDL Reading a Binary Data File

244 Chapter 9: Reading and Writing Binary Data
Fields can define themselves in terms of other fields using IDL expressions. Fields
need not be returned to the user at READ_BINARY time, but can be used to define
other fields. Scalar fields can also be labeled as Verify. All comparisons in a
verification are based on equality. If a sample data file is given in the call to
BINARY_TEMPLATE, verified fields are read from the sample data file and
checked against their specified verify value. When READ_BINARY is called with a
template specifying that fields be verified, READ_BINARY reports an error if a
verification fails.

Templates must have at least one field marked yes for return from READ_BINARY.
The value for a Verify field can be entered as an expression in IDL syntax, including
hex literal values or expressions involving previously defined fields.

Result = READ_BINARY('surface.dat', TEMPLATE=template)

Figure 9-3: Binary Template - Modify Field
Reading a Binary Data File Using IDL

Chapter 9: Reading and Writing Binary Data 245
Advanced File Input/Output

For information on more advanced file I/O capabilities, see Chapter 8, “Files and
Input/Output” in the Building IDL Applications manual.
Using IDL Advanced File Input/Output

246 Chapter 9: Reading and Writing Binary Data
Advanced File Input/Output Using IDL

Part III: Using
Direct Graphics

Chapter 10:

Graphics
The following topics are covered in this chapter:
Overview . 250
IDL Direct Graphics 251

IDL Object Graphics 252
Using IDL 249

250 Chapter 10: Graphics
Overview

Beginning with IDL version 5.0, IDL supports two distinct graphics modes: Direct
Graphics and Object Graphics. Direct Graphics rely on the concept of a current
graphics device; IDL commands like PLOT or SURFACE create images directly on
the current graphics device. Object Graphics use an object-oriented programmers’
interface to create graphic objects, which must then be drawn, explicitly, to a
destination of the programmer’s choosing.
Overview Using IDL

Chapter 10: Graphics 251
IDL Direct Graphics

If you have used versions of IDL prior to version 5.0, you are already familiar with
IDL Direct Graphics. The salient features of Direct Graphics are:

• Direct Graphics use a graphics device (X for X-windows systems displays,
WIN for Microsoft Windows displays, MAC for Macintosh displays, PS for
PostScript files, etc.). You switch between graphics devices using the
SET_PLOT command, and control the features of the current graphics device
using the DEVICE command.

• IDL commands that existed in IDL 4.0 use Direct Graphics. Commands like
PLOT, SURFACE, XYOUTS, MAP_SET, etc. all draw their output directly on
the current graphics device.

• Once a direct-mode graphic is drawn to the graphics device, it cannot be
altered or re-used. This means that if you wish to re-create the graphic on a
different device, you must re-issue the IDL commands to create the graphic.

• When you add a new item to an existing direct-mode graphic (using a routine
like OPLOT or XYOUTS), the new item is drawn in front of the existing
items.
Using IDL IDL Direct Graphics

252 Chapter 10: Graphics
IDL Object Graphics

Versions of IDL beginning with version 5.0 include Object Graphics in addition to
Direct Graphics. The salient features of Object Graphics are:

• Object graphics are device independent. There is no concept of a current
graphics device when using object-mode graphics; any graphics object can be
displayed on any physical device for which a destination object can be created.

• Object graphics are object-oriented. Graphic objects are meant to be created
and re-used; you may create a set of graphic objects, modify their attributes,
draw them to a window on your computer screen, modify their attributes again,
then draw them to a printer device without reissuing all of the IDL commands
used to create the objects. Graphics objects also encapsulate functionality; this
means that individual objects include method routines that provide
functionality specific to the individual object.

• Object graphics are rendered in three dimensions. Rendering implies many
operations not needed when drawing Direct Graphics, including calculation of
normal vectors for lines and surfaces, lighting considerations, and general
object overhead. As a result, the time needed to render a given object—a
surface, say—will often be longer than the time taken to draw the analogous
image in Direct Graphics.

• Object Graphics use a programmer’s interface. Unlike Direct Graphics, which
are well suited for both programming and interactive, ad hoc use, Object
Graphics are designed to be used in programs that are compiled and run. While
it is still possible to create and use graphics objects directly from the IDL
command line, the syntax and naming conventions make it more convenient to
build a program offline than to create graphics objects on the fly.

• Because Object Graphics persist in memory, there is a greater need for the
programmer to be cognizant of memory issues and memory leakage. Efficient
design—remembering to destroy unused object references and cleaning up—
will avert most problems, but even the best designs can be memory-intensive if
large numbers of graphic objects (or large datasets) are involved.
IDL Object Graphics Using IDL

Chapter 11:

Direct Graphics
Plotting

The following topics are covered in this chapter:
Overview . 254
Plotting Keyword Parameters 255
Direct Graphics Coordinate Systems 256
Annotation – The XYOUTS Procedure . . 265
Plotting Symbols . 267
Polygon Filling . 271
Tick Marks . 275

Logarithmic Scaling 278
Multiple Plots on a Page 280
Specifying the Location of the Plot 282
Plotting Missing Data 284
Date/Time Plotting 285
Using the AXIS Procedure 296
Using the CURSOR Procedure 300
Using IDL 253

254 Chapter 11: Direct Graphics Plotting
Overview

IDL includes several routines that can be used to display data in a variety of plot
formats, including general x versus y, contour, mesh surface, and perspective plots.
The routines allow users to display information in a manner that can be easily
understood during data analysis.

Optional keyword parameters and system variables enable users to change certain
specifications of the routines, such as scaling, style, and colors, for custom or
specialized plots.

This chapter provides examples of scientific graphics in which one variable is plotted
as a function of another. The routines for the display of functions of two variables,
CONTOUR, SHADE_SURF, and SURFACE, are explained in detail in “Plotting
Multi-Dimensional Arrays” in Chapter 12.

Running the Example Code

The examples in this chapter are all written to take advantage of IDL Direct Graphics.

Some of the example code used in this chapter is part of the IDL distribution. All of
the files mentioned are located in the examples/doc subdirectory of the IDL
distribution. By default, this directory is part of IDL’s path; if you have not changed
your path, you will be able to run the examples as described here. See !PATH in the
IDL Reference Guide for information on IDL’s path.
Overview Using IDL

Chapter 11: Direct Graphics Plotting 255
Plotting Keyword Parameters

The IDL plotting procedures are designed to produce acceptable results for most
applications with a minimum amount of effort. The large number of keyword
parameters, described in the IDL Reference Guide, in combination with plotting and
graphic system variables, allow users to customize the graphics produced by IDL.
Most of these keyword parameters pertain to advanced programming. The major
keyword parameters are described and illustrated by example in this chapter.

Correspondence with System Variables

Many of the keyword parameters correspond directly to fields in the system variables
!P, !X, !Y, or !Z. When specifying a keyword parameter name and value in a call that
value affects only the current call, the corresponding system-variable field is not
changed. Changing the value of a system-variable field changes the default for that
particular parameter and remains in effect until explicitly changed. The system
variables involving graphics and their corresponding keywords are detailed in
Appendix D, “System Variables” in the IDL Reference Guide.

Example—The COLOR Keyword Parameter

The keyword parameter COLOR corresponds to the field COLOR of the system-
variable structure !P and is referenced as !P.COLOR. To set the color of a plot to
color-index 12, use the following statement:

PLOT, X, Y, COLOR = 12

Future plots are not affected and are drawn with color index !P.COLOR, which is
normally set to the number of available colors minus one.

The interpretation of the color index varies among the devices supported by IDL.
With color video displays, this index selects a color (normally a red, green, blue
(RGB) triple stored in a device table). You can control the color selected by each
color index with the TVLCT procedure which loads the device color tables.

Other devices have a fixed color associated with each color index. With plotters, for
example, the correspondence between colors and color index is established by the
order of the pens in the carousel.

To change the default color of future plots, use a statement such as:

!P.COLOR = 12

which sets the default color to color-index 12. You can override this default at any
time by including the COLOR keyword in the graphic routine call.
Using IDL Plotting Keyword Parameters

256 Chapter 11: Direct Graphics Plotting
Direct Graphics Coordinate Systems

You can specify coordinates to IDL in one of the following coordinate systems:

DATA Coordinates

This coordinate system is established by the most recent PLOT, CONTOUR, or
SURFACE procedure. This system usually spans the plot window, the area bounded
by the plot axes, with a range identical to the range of the plotted data. The system
can have two or three dimensions and can be linear, logarithmic, or semi-logarithmic.
The mechanisms of converting from one coordinate system to another are described
below. See “CONVERT_COORD Function” on page 257.

DEVICE Coordinates

This coordinate system is the physical coordinate system of the selected plotting
device. Device coordinates are integers, ranging from (0, 0) at the bottom-left corner
to (Vx –1, Vy –1) at the upper-right corner. Vx and Vy are the number of columns and
rows addressed by the device. These numbers are stored in the system variable !D as
!D.X_SIZE and !D.Y_SIZE.

NORMAL Coordinates

The normalized coordinate system ranges from zero (0) to one (1) over each of the
three axes.

Almost all of the IDL graphics procedures accept parameters in any of these
coordinate systems. Most procedures use the data coordinate system by default.
Routines beginning with the letters TV are notable exceptions. They use device
coordinates by default. You can explicitly specify the coordinate system to be used by
including one of the keyword parameters /DATA, /DEVICE, or /NORMAL in the
call.

Two-Dimensional Coordinate Conversion

The system variables !D, !P, !X, !Y, and !Z contain the information necessary to
convert from one coordinate system to another. The relevant fields of these system
variables are explained below, and formulae are given for conversions to and from
each coordinate system. See Chapter 12, “Plotting Multi-Dimensional Arrays” for a
discussion of three-dimensional coordinates.
Direct Graphics Coordinate Systems Using IDL

Chapter 11: Direct Graphics Plotting 257
In the following discussion, D is a data coordinate, N is a normalized coordinate, and
R is a raw device coordinate.

The fields !D.X_VSIZE and !D.Y_VSIZE always contain the size of the visible area
of the currently selected display or drawing surface. Let Vx and Vy represent these two
sizes.

The field !X.S is a two-element array that contains the parameters of the linear
equation, converting data coordinates to normalized coordinates. !X.S[0] is the
intercept, and !X.S[1] is the slope. !X.TYPE is 0 for a linear x-axis and 1 for a
logarithmic x-axis. The y- and z-axes are handled in the same manner, using the
system variables !Y and !Z.

Also, let Dx be the data coordinate, Nx the normalized coordinate, Rx the device
coordinate, Vx the device X size (in device coordinates), and Xi = !X.Si (the scaling
parameter).

With the above variables defined, the linear two-dimensional coordinate conversions
for the x coordinate can be written as follows:

The y- and z-axis coordinates are converted in exactly the same manner, with the
exception that there is no z device coordinate and that logarithmic z-axes are not
permitted.

CONVERT_COORD Function

The CONVERT_COORD function provides a convenient means of computing the
above transformations. It can convert coordinates to and from any of the above
systems. The keywords DATA, DEVICE, or NORMAL specify the input system. The

Coordinate
Conversion Linear Logarithmic

Data to normal

Data to device

Normal to device

Normal to data

Device to data

Device to normal

Table 11-1: Equations for X-axis Coordinate Conversion

Nx X0 X1Dx+= Nx X0 X1 Dxlog+=

Rx Vx X0 X1Dx+()= Rx Vx X0 X1 Dxlog+()=

Rx NxVx= Rx NxVx=

Dx Nx X0–() X1⁄= Dx 10 Nx X0–() X1⁄=

Dx Rx Vx⁄ X0–() X1⁄= Dx 10 Rx Vx⁄ X0–() X1⁄=

Nx Rx Vx⁄= Nx Rx Vx⁄=
Using IDL Direct Graphics Coordinate Systems

258 Chapter 11: Direct Graphics Plotting
output coordinate system is specified by one of the keywords TO_DATA,
TO_DEVICE, or TO_NORMAL. For example, to convert the endpoints of a line
from data coordinates (0, 1) to (5, 7) to device coordinates, use the following
statement:

D = CONVERT_COORD([0, 5], [1, 7], /DATA, /TO_DEVICE)

On completion, the variable D is a (3, 2) vector, containing the x, y, and z coordinates
of the two endpoints.

X Versus Y Plots—PLOT and OPLOT

This section illustrates the use of the basic x versus y plotting routines, PLOT and
OPLOT. PLOT produces linear-linear plots by default, and can produce linear-log,
log-linear, or log-log plots with the addition of the XLOG and YLOG keywords.

Data used in these examples are from a fictitious study of Pacific Northwest Salmon
fisheries. In the example, we suppose that data were collected in the years 1967,
1970, and from 1975 to 1983. The following IDL statements create and initialize the
variables SOCKEYE, COHO, CHINOOK, and HUMPBACK, which contain
fictitious fish population counts, in thousands, for the 11 observations:

SOCKEYE=[463, 459, 437, 433, 431, 433, 431, 428, 430, 431, 430]
COHO=[468, 461, 431, 430, 427, 425, 423, 420, 418, 421, 420]
CHINOOK=[514, 509, 495, 497, 497, 494, 493, 491, 492, 493, 493]
HUMPBACK=[467, 465, 449, 446, 445, 444, 443, 443, 443, 443, 445]
; Construct a vector in which each element contains
; the year of the sample:
YEAR = [1967, 1970, INDGEN(9) + 1975]

If you prefer not to enter the data by hand, run the batch file plot01 with the
following command at the IDL prompt:

@plot01

See “Running the Example Code” on page 254 if IDL does not find the batch file.

The following IDL commands create a plot of the population of Sockeye salmon, by
year:

PLOT, YEAR, SOCKEYE, $
TITLE='Sockeye Population', XTITLE='Year', $
YTITLE='Fish (thousands)'

The PLOT procedure, which produces an x versus y plot on a new set of axes,
requires one or two parameters: a vector of y values or a vector of x values followed
by a vector of y values. The first attempt at making a plot produces the figure shown
Direct Graphics Coordinate Systems Using IDL

Chapter 11: Direct Graphics Plotting 259
below. Note that the three titles, defined by the keywords TITLE, XTITLE, and
YTITLE, are optional.

Axis Scaling

The fluctuations in the data are hard to see because the scores range from 428 to 463,
and the plot’s y-axis is scaled from 0 to 500. Two factors cause this effect. By default,
IDL sets the minimum y-axis value of linear plots to zero if the y data are all positive.
The maximum axis value is automatically set by IDL from the maximum y data
value. In addition, IDL attempts to produce from three to six tick-mark intervals that
are in increments of an integer power of 10 times 2, 2.5, 5, or 10. In this example, this
rounding effect causes the maximum axis value to be 500, rather than 463.

The YNOZERO keyword parameter inhibits setting the y-axis minimum to zero
when given positive, nonzero data. The figure below illustrates the data plotted using

Figure 11-1: Initial Population Plot
Using IDL Direct Graphics Coordinate Systems

260 Chapter 11: Direct Graphics Plotting
this keyword. The y-axis now ranges from 420 to 470, and IDL creates tick-mark
intervals of 10.

;Define variables:
@plot01
PLOT, YEAR, SOCKEYE, /YNOZERO, $

TITLE='Sockeye Population', XTITLE='Year', $
YTITLE='Fish (thousands)'

Multiline Titles

The graph-text positioning command !C, starts a new line of text output. Titles
containing more than one line of text are easily produced by separating each line with
this positioning command.

In the above example, the main title could have been displayed on two centered lines
by changing the keyword parameter TITLE to the following statement:

TITLE = 'Sockeye!CPopulation'

Figure 11-2: Properly Scaled Plot
Direct Graphics Coordinate Systems Using IDL

Chapter 11: Direct Graphics Plotting 261
Note
When using multiple line titles you may find that the default margins are
inadequate, causing the titles to run off the page. In this case, set the [XY]MARGIN
keywords or increase the values of !X.MARGIN or !Y.MARGIN.

Range Keyword

The range of the x, y, or z axes can be explicitly specified with the [XYZ] RANGE
keyword parameter. The argument of the keyword parameter is a two-element vector
containing the minimum and maximum axis values.

As explained above, IDL attempts to produce even tick intervals, and the axis range
selected by IDL may be slightly larger than that given with the RANGE keyword. To
obtain the exact specified interval, set the axis style parameter to one (YSTYLE = 1).

The effect of the YNOZERO keyword is identical to that obtained by including the
keyword parameter YRANGE = [MIN(Y), MAX(Y)] in the call to PLOT. You can
make /YNOZERO the default in subsequent plots by setting bit 4 of !Y.STYLE to
one (!Y.STYLE = 16).

See STYLE in the IDL Reference Guide for details on the STYLE field of the axis
system variables !X, !Y, and !Z. Briefly: Other bits in the STYLE field extend the
axes by providing a margin around the data, suppress the axis and its notation, and
suppress the box-style axes by drawing only left and bottom axes.
Using IDL Direct Graphics Coordinate Systems

262 Chapter 11: Direct Graphics Plotting
For example, to constrain the x-axis to the years 1975 to 1983, the keyword
parameter XRANGE = [1975, 1983] is included in the call to PLOT. The following
figure illustrates the result.

Note that the x-axis actually extends from 1974 to 1984, as IDL elected to make five
tick-mark intervals, each spanning two years. If, as explained above, the x-axis style
is set to one, the plot will exactly span the given range. The call combining all these
options is as follows:

; Define variables:
@plot01
PLOT, YEAR, SOCKEYE, /YNOZERO, $

TITLE='Sockeye Population', XTITLE = 'Year', $
YTITLE = 'Fish (thousands)', XRANGE = [1975, 1983], /XSTYLE

Note
The keyword parameter syntax /XSTYLE is synonymous with the expression
XSTYLE = 1. Setting a keyword parameter to 1 is often referred to as simply
setting the keyword.

Figure 11-3: Plot with X-Axis Range of 1975 to 1983
Direct Graphics Coordinate Systems Using IDL

Chapter 11: Direct Graphics Plotting 263
Overplotting

Additional data can be added to existing plots with the OPLOT procedure. Each call
to PLOT establishes the plot window (the rectangular area enclosed by the axes), the
plot region (the box enclosing the plot window and its annotation), the axis types
(linear or log), and the scaling. This information is saved in the system variables !P,
!X, and !Y and used by subsequent calls to OPLOT.

Frequently, the color index, line style, or line thickness parameters are changed in
each call to OPLOT to distinguish the data sets. The IDL Reference Guide contains a
table describing the line style associated with each index.

The figure below illustrates a plot showing all four data sets. Each data set except the
first was plotted with a different line style and was produced by a call to OPLOT. In
this example, an (11, 4) array called ALLPTS is defined and contains all the scores
for the four categories using the array concatenation operator. Once this array is
defined, the IDL array operators and functions can be applied to the entire data set,
rather than explicitly referencing the particular sample.

First, we define an n-by-4 array containing all four sample vectors. (This array is also
defined by the plot01 batch file.)

ALLPTS = [[COHO], [SOCKEYE], [HUMPBACK], [CHINOOK]]

The plot in the preceding figure was produced with the following statements:

Figure 11-4: Overplotting Using Different Linestyles
Using IDL Direct Graphics Coordinate Systems

264 Chapter 11: Direct Graphics Plotting
; Define variables:
@plot01
; Plot first graph. Set the y-axis min and max
; from the min and max of all data sets. Default linestyle is 0.
PLOT, YEAR, COHO, YRANGE = [MIN(ALLPTS), MAX(ALLPTS)], $

TITLE='Salmon Populations', XTITLE = 'Year', $
YTITLE = 'Fish (thousands)', XRANGE = [1975, 1983], $
/XSTYLE

; Loop for the three remaining scores, varying the linestyle:
FOR I = 1, 3 DO OPLOT, YEAR, ALLPTS[*, I], LINE = I
Direct Graphics Coordinate Systems Using IDL

Chapter 11: Direct Graphics Plotting 265
Annotation – The XYOUTS Procedure

An obvious problem with the previous figure is that each line should be labeled
showing what it depicts. The XYOUTS procedure is used to write graphic text at a
given location. The call to XYOUTS to write a string starting at location (x, y) is as
follows:

XYOUTS, X, Y, STRING

See XYOUTS in the IDL Reference Guide for a complete list of keywords available
when adding graphic text to a plot.

The next figure illustrates one method of annotating each graph with its name. The
plot was produced exactly as was the previous figure, except that the x-axis range was
extended to the year 1990 to allow room for the titles. To accomplish this, the
keyword parameter XRANGE = [1967, 1990] was added to the call to PLOT. A
string vector, NAMES, containing the names of each sample population also is
defined.

First, we define an array containing names for each of the lines plotted. (This array is
also defined by the plot01 batch file.)

Figure 11-5: Example of Annotating Each Line
Using IDL Annotation – The XYOUTS Procedure

266 Chapter 11: Direct Graphics Plotting
NAMES=['Coho','Sockeye','Humpback','Chinook']

The plot was produced with the following statements:

; Define variables:
@plot01
; Index of last point:
N1 = N_ELEMENTS(YEAR) - 1
; Plot first graph. Set the y-axis min and max
; from the min and max of all data sets. Default linestyle is 0.
PLOT, YEAR, COHO, YRANGE = [MIN(ALLPTS), MAX(ALLPTS)], $

TITLE='Salmon Populations', XTITLE = 'Year', $
YTITLE = 'Fish (thousands)', XRANGE = [1965, 1990], $
/XSTYLE

; Loop for the three remaining scores, varying the linestyle:
FOR I = 1, 3 DO OPLOT, YEAR, ALLPTS[*, I], LINE = I
; Append the title of each graph on the right:
FOR I = 0, 3 DO XYOUTS, 1984, ALLPTS[N1, I], NAMES[I]

Font Selection

The previous figure also illustrates the use of a PostScript font (Times-Roman, in this
case) for the titles and annotations. Note that PostScript fonts can only be used when
the current graphics devices is set to PostScript.

This font was selected by first setting the default font, controlled by the system
variable !P.FONT, to the hardware-font index of zero, and then calling the DEVICE
procedure to set the Times-Roman font. To recreate the plot using this font on your
system, inspect the batch file plot02, located in the examples/doc subdirectory of
the IDL distribution. Note that running this batch files creates a PostScript file named
plot.ps in your current working directory. See “Running the Example Code” on
page 254 if IDL does not find the batch file.

Warning
Because not all devices have selectable hardware fonts, default hardware fonts vary.
Use of other PostScript fonts and their bold, italic, oblique, and other variants is
described in Appendix H, “Fonts” in the IDL Reference Guide.
Annotation – The XYOUTS Procedure Using IDL

Chapter 11: Direct Graphics Plotting 267
Plotting Symbols

Each data point can be marked with a symbol and/or connected with lines. The value
of the keyword parameter PSYM selects the marker symbol, as described in the IDL
Reference Guide. For example, a value of 1 marks each data point with the plus sign
(+), 2 is an asterisk (*), etc. Setting PSYM to minus the symbol number marks the
points with a symbol and connects them with lines. A value of –1 marks points with a
plus sign (+) and connects them with lines. Note also that setting PSYM to a value of
10 produces histogram style plots in which a horizontal line is drawn across each x
bin.

Frequently, when data points are plotted against the results of a fit or model, symbols
are used to mark the data points while the model is plotted using a line. The figure
below illustrates this, fitting the Sockeye population values to a quadratic function of
the year. The IDL function POLY_FIT is used to calculate the quadratic.

The statements used to construct the above plot are as follows:

; Define variables.
@plot01
; Use the LINFIT function to fit the data to a line:

Figure 11-6: Plotting with Predefined Marker Symbols
Using IDL Plotting Symbols

268 Chapter 11: Direct Graphics Plotting
coeff = LINFIT(YEAR, SOCKEYE)
;YFIT is the fitted line:
YFIT = coeff[0] + coeff[1]*YEAR
; Plot the original data points with PSYM = 4, for diamonds:
PLOT, YEAR, SOCKEYE, /YNOZERO, PSYM = 4, $

TITLE = 'Quadratic Fit', XTITLE = 'Year', $
YTITLE = 'Sockeye Population'

; Overplot the smooth curve using a plain line:
OPLOT, YEAR, YFIT

Alternatively, you can run the following batch file to create the plot:

@plot03

See “Running the Example Code” on page 254 if IDL does not find the batch file.

Defining Your Own Plotting Symbols

The USERSYM procedure allows you to define your own symbols by supplying the
coordinates of the lines used to draw the symbol. The symbol you define can be
drawn using lines or it can be filled using the polygon filling operator. USERSYM
accepts two vector parameters: a vector of x values and a vector of y values. The
coordinate system you use to define the symbol’s shape is centered on each data
point, and each unit is approximately the size of a character. For example, to define
the simplest symbol, use a one character-wide dash centered over the data point:

USERSYM, [-.5, .5], [0, 0]

The color and line thickness used to draw the symbols are also optional keyword
parameters of USERSYM. The following code illustrates the use of USERSYM to
define a new symbol—a filled circle:

; Make a vector of 16 points, A[i] = 2pi/16:
A = FINDGEN(17) * (!PI*2/16.)
; Define the symbol to be a unit circle with 16 points,
; and set the filled flag:
USERSYM, COS(A), SIN(A), /FILL

Using the variables defined in the above example, we then create the plot, specifying
8 (user-defined) for the PSYM keyword to PLOT:

PLOT, YEAR, SOCKEYE, /YNOZERO, PSYM = 8, $
TITLE = 'Quadratic Fit', XTITLE = 'Year', $
YTITLE = 'Sockeye Population'

; Overplot the smooth curve using a plain line:
OPLOT, YEAR, YFIT
Plotting Symbols Using IDL

Chapter 11: Direct Graphics Plotting 269
The following figure shows the result of this code:

See USERSYM in the IDL Reference Guide for additional details.

Histogram Mode

Using the keyword PSYM=10 with the PLOT routines draws graphs in the histogram
mode, connecting points with vertical and horizontal lines. This next figure illustrates

Figure 11-7: Plotting with User-defined Plotting Symbols
Using IDL Plotting Symbols

270 Chapter 11: Direct Graphics Plotting
the comparison between the distribution of the IDL normally distributed random
number function (RANDOMN) to the theoretical normal distribution.

The plot was produced by the following IDL commands:

; Two-hundred values ranging from -5 to 4.95:
X = FINDGEN(200) / 20. - 5.
; Theoretical normal distribution, scale so integral is one:
Y = 1/SQRT(2.*!PI) * EXP(-X^2/2) * (10./200)
; Approximate normal distribution with RANDOMN,
; then form the histogram.
H = HISTOGRAM(RANDOMN(SEED, 2000), $
BINSIZE = 0.4, MIN = -5., MAX = 5.)/2000.
; Plot the approximation using "histogram mode."
PLOT,FINDGEN(26) * 0.4 - 4.8, H, PSYM = 10
; Overplot the actual distribution:
OPLOT, X, Y * 8.

Figure 11-8: Histogram Mode
Plotting Symbols Using IDL

Chapter 11: Direct Graphics Plotting 271
Polygon Filling

Many scientific graphs use region filling to highlight the difference between two or
more curves, to illustrate boundaries, etc. The IDL POLYFILL procedure fills the
interior of arbitrary polygons given a list of vertices. The interior of the polygon can
be filled with a solid color or with some devices, a user-defined fill pattern contained
in a rectangular array.

The figure below illustrates a simple example of polygon filling by filling the region
under the Chinook population graph with a color index of 25 percent the maximum,
then filling the region under the Sockeye population graph with 50 percent of the
maximum index. Because the Chinook populations are always higher than the
Sockeye populations, the graph appears as two distinct regions.

The program that produced this figure is shown below. It first draws a plot axis with
no data, using the NODATA keyword. The minimum and maximum y values are
directly specified with the YRANGE keyword. Because the y-axis range does not
always exactly include the specified interval (see “X Versus Y Plots—PLOT and
OPLOT” on page 258), the variable MINVAL, is set to the current y-axis minimum,
!Y.CRANGE[0]. Next, the upper Chinook population region is shaded with a

Figure 11-9: Filling Regions Using POLYFILL
Using IDL Polygon Filling

272 Chapter 11: Direct Graphics Plotting
polygon that contains the vertices of the Chinook samples, preceded and followed by
points on the x-axis, (YEAR[0], MINVAL), and (YEAR[n-1], MINVAL). The polygon
for the Sockeye samples is drawn using the same method with a different color.
Finally, the XYOUTS procedure is used to annotate the two regions.

Enter the following IDL commands to create the plot:

; Define variables:
@plot01
; Draw axes, no data, set the range:
PLOT, YEAR, CHINOOK, YRANGE = [MIN(SOCKEYE), MAX(CHINOOK)], $

/NODATA, TITLE='Sockeye and Chinook Populations', $
XTITLE='Year', YTITLE='Fish (thousands)'

; Make a vector of x values for the polygon by duplicating
; the first and last points:
PXVAL = [YEAR[0], YEAR, YEAR[N1]]
;Get y value along bottom x-axis:
MINVAL = !Y.CRANGE[0]
; Make a polygon by extending the edges down to the x-axis:
POLYFILL, PXVAL, [MINVAL, CHINOOK, MINVAL], $

COL = 0.75 * !D.N_COLORS
; Same with second polygon.
POLYFILL, PXVAL, [MINVAL, SOCKEYE, MINVAL], $

COL = 0.50 * !D.N_COLORS
; Label the polygons:
XYOUTS, 1968, 430, 'SOCKEYE', SIZE=2
XYOUTS, 1968, 490, 'CHINOOK', SIZE=2

Alternatively, you can run the following batch file to create the plot:

@plot04

See “Running the Example Code” on page 254 if IDL does not find the batch file.

Bar Charts

Bar (or box) charts are used in business-style graphics and are useful in comparing a
small number of measurements within a few discrete data sets. Although not
designed as a tool for business graphics, IDL can produce many business-style plots
with little effort.

The following example produces a box-style chart showing the four salmon
populations as boxes of differing colors or shading. The commands used to draw the
next figure are shown below with annotation. You do not need to type these
commands in yourself; they are collected in the files plot05.pro, which contains
Polygon Filling Using IDL

Chapter 11: Direct Graphics Plotting 273
the two procedures, and plot06, which contains the found in the examples/doc
subdirectory of the IDL distribution.

First, we define a procedure called BOX, which draws a box given the coordinates of
two diagonal corners:

; Define a procedure that draws a box, using POLYFILL,
; whose corners are (X0, Y0) and (X1, Y1):
PRO BOX, X0, Y0, X1, Y1, color

; Call POLYFILL:
POLYFILL, [X0, X0, X1, X1], [Y0, Y1, Y1, Y0], COL = color

END

Next, create a procedure to draw the bar graph:

PRO BARGRAPH, minval
; Define variables:
@plot01
; Width of bars in data units:
del = 1./5.
; The number of colors used in the bar graph is
; defined by the number of colors available on your system:
ncol=!D.N_COLORS/5
; Create a vector of color indices to be used in this procedure:
colors = ncol*INDGEN(4)+ncol
; Loop for each sample:

Figure 11-10: Bar Chart Drawn with POLYFILL
Using IDL Polygon Filling

274 Chapter 11: Direct Graphics Plotting
FOR iscore = 0, 3 DO BEGIN
; The y value of annotation. Vertical separation is 20 data
; units:
yannot = minval + 20 *(iscore+1)
; Label for each bar:
XYOUTS, 1984, yannot, names[iscore]
; Bar for annotation:
BOX, 1984, yannot - 6, 1988, yannot - 2, colors[iscore]
; The x offset of vertical bar for each sample:
xoff = iscore * del - 2 * del
; Draw vertical box for each year's sample:
FOR iyr=0, N_ELEMENTS(year)-1 DO $

BOX, year[iyr] + xoff, minval, $
year[iyr] + xoff + del, $
allpts[iyr, iscore], $
colors[iscore]

ENDFOR
END

Enter the following at the IDL prompt to compile these two procedures from the IDL
distribution:

.run plot5.pro

To create the bar graph on your screen, enter the following commands.

; Load a color table:
LOADCT, 39

As in the previous example, the PLOT procedure is used to draw the axes and to
establish the scaling using the NODATA keyword.

PLOT, year, CHINOOK, YRANGE = [MIN(allpts),MAX(allpts)], $
TITLE = 'Salmon Populations', /NODATA, $
XRANGE = [year[0], 1990]

; Get the y value of the bottom x-axis:
minval = !Y.CRANGE[0]
; Create the bar chart:
BARGRAPH, minval

Alternatively, you can run the following batch file to create the plot:

@plot06

See “Running the Example Code” on page 254 if IDL does not find the batch file.
Polygon Filling Using IDL

Chapter 11: Direct Graphics Plotting 275
Tick Marks

You have almost complete control of the number, style, placement, thickness, and
annotation of the tick marks. The following plotting keyword parameters and their
corresponding system variable fields affect the tick marks:

[XYZ]GRIDSTYLE

The index of the line style to be used for plot tick marks and grids (i.e., when
TICKLEN is set to 1.0). See [XYZ]GRIDSTYLE in the IDL Reference Guide for
more information.

[XYZ]MINOR

The number of minor-tick intervals. If set to zero, the default, IDL automatically
determines the number of minor ticks in each major tick-mark interval. Setting this
parameter to 1 suppresses the minor ticks, and setting it to a positive, nonzero
number, n, produces n minor-tick intervals, and n–1 minor-tick marks. See
[XYZ]MINOR in the IDL Reference Guide for more information.

[XYZ]THICK

The thickness of the x, y, or z axes and their tick marks. This parameter is set with the
field THICK in the axes system variables, !X, !Y, and !Z (e.g., !X.THICK controls
the x-axis thickness). There are no keyword parameters affecting the axis thickness.
See [XYZ]THICK in the IDL Reference Guide for more information.

[XYZ]TICKFORMAT

Set this keyword to a format string or a string containing the name of a function that
returns a string to be used to format the axis tick mark labels. See
[XYZ]TICKFORMAT in the IDL Reference Guide for more information.

TICKLEN

The length of each major-tick mark, expressed as a fraction of the window size in the
tick mark’s direction. The default value is 0.02. A length of 1.0 produces a grid. A
value of -0.02 makes tick marks that extend away from the plot. Individual axis ticks
can be controlled with the [XYZ]TICKLEN keyword. See TICKLEN in the IDL
Reference Guide for more information.

[XYZ]TICKNAME

A string array containing the annotation of each major-tick mark. If omitted or if a
given string element contains the null string, IDL labels the tick mark with its value.
Using IDL Tick Marks

276 Chapter 11: Direct Graphics Plotting
To suppress the tick labels, supply a string array of one-character long, blank strings,
i.e., REPLICATE(' ', N). Null strings force IDL to number the tick mark with its
value. See [XYZ]TICKNAME in the IDL Reference Guide for more information.

Note
If there are n tick-mark intervals, there are n + 1 tick marks and labels.

[XYZ]TICKS

The number of major tick-mark intervals. If set to zero or omitted, IDL produces
between three and six intervals. See [XYZ]TICKS in the IDL Reference Guide for
more information.

[XYZ]TICKV

The data values of each tick mark. You can directly specify these values, producing
graphs with arbitrary tick marks. If you do this, IDL scales the axis from the first tick
value to the last unless you directly specify a range. As above, be sure to provide
n + 1 tick values. See [XYZ]TICKV in the IDL Reference Guide for more
information.

Example: Specifying Tick Marks

The following figure shows a box chart illustrating the direct specification of the x-
axis tick values, number of ticks, and tick names. Building upon the previous
program, this program shows each of the four scores for the year 1967, the first year
in our data. It uses the BOX procedure from the previous example to draw a rectangle
for each sample.

Figure 11-11: Controlling Tick Marks and Their Annotation
Tick Marks Using IDL

Chapter 11: Direct Graphics Plotting 277
Using the data and variables from above, the following commands create the box
chart:

Enter the following command at the IDL prompt to compile the BOX and BARGRAPH
procedures (discussed in the previous example) from the IDL distribution:

.run plot05.pro

Enter the following commands to create the box chart:

; Define variables:
@plot01
; Tick x values, 0.2, 0.4, 0.6, 0.8:
XVAL = FINDGEN(4)/5. + .2
; Make a vector of scores from first year, corresponding to
; the name vector from above:
YVAL = [COHO[0], SOCKEYE[0], HUMPBACK[0], CHINOOK[0]]
; Make the axes with no data. Force x range to [0, 1],
; centering xval, which also contains the tick values.
; Force three tick intervals making four tick marks.
; Specify the tick names from the names vector:
PLOT, XVAL, YVAL, /YNOZERO, XRANGE = [0,1], XTICKV = XVAL, $

XTICKS = 3, XTICKNAME = NAMES, /NODATA, $
TITLE = 'Salmon Populations, 1967'

; Draw the boxes, centered over the tick marks.
; !Y.CRANGE[0] is the y value of the bottom x-axis.
FOR I = 0, 3 DO BOX, XVAL[I] - .08, !Y.CRANGE[0], $

XVAL[I] + 0.08, YVAL[I], 128

Alternatively, you can run the following batch file to create the plot:

@plot07

See “Running the Example Code” on page 254 if IDL does not find the batch file.

More Tick Mark Examples

See “Multiple Plots on a Page” on page 280 for more examples of ways you can
control where axes are drawn, tick mark length, and placement.
Using IDL Tick Marks

278 Chapter 11: Direct Graphics Plotting
Logarithmic Scaling

The XLOG, YLOG, and ZLOG keywords can be used with the PLOT routine to get
any combination of linear and logarithmic axes. The OPLOT procedure uses the
same scaling and transformation as did the most recent plot.

The figure illustrates using PLOT to make a linear-log plot. It was produced with the
following statements:

; Create data array:
X = FLTARR(256)
; Make a step function. Array elements 80 through 120 are set to 1:
X[80:120] = 1
; Make a filter:
FREQ = FINDGEN(256)
; Make the filter symmetrical about the value x = 128:
FREQ = FREQ < (256-FREQ)
; Second order Butterworth, cutoff frequency = 20.
FIL = 1./(1+(FREQ/20)^2)
; Plot with a logarithmic x-axis. Use exact axis range:
PLOT, /YLOG, FREQ, ABS(FFT(X,1)), $

XTITLE = 'Relative Frequency', YTITLE = 'Power', $

Figure 11-12: Example of Logarithmic Scaling
Logarithmic Scaling Using IDL

Chapter 11: Direct Graphics Plotting 279
XSTYLE = 1
; Plot graph:
OPLOT, FREQ, FIL

Alternatively, you can run the following batch file to create the plot:

@plot08

See “Running the Example Code” on page 254 if IDL does not find the batch file.
Using IDL Logarithmic Scaling

280 Chapter 11: Direct Graphics Plotting
Multiple Plots on a Page

Plots can be ganged on the display or page in the horizontal and/or vertical directions
using the system variable field !P.MULTI. IDL sets the plot window to produce the
given number of plots on each page and moves the window to a new sector at the
beginning of each plot. If the page is full, it is first erased. If more than two rows or
columns of plots are produced, IDL decreases the character size by a factor of 2.

!P.MULTI controls the output of multiple plots. Set !P.MULTI equal to an integer
vector in which:

• The first element of the vector contains the number of empty sectors remaining
on the page. The display is erased if this field is zero when a new plot is begun.

• The second element of the vector contains the number of plots per page in the
horizontal direction.

• The third element contains the number of plots per page in the vertical
direction.

• The fourth element contains the number of plots stacked in the Z dimension.

• The fifth element controls the order in which plots are drawn. Set the fifth
element equal to zero to make plots from left to right (column major), and top
to bottom. Set the fifth element equal to one to make plots from top to bottom,
left to right (row major).

Omitting any of the five elements from the vector is the same as setting that element
equal to zero.

For example, to set up IDL to stack two plots vertically on each page, use the
following statement:

!P.MULTI = [0, 1, 2]

Note that the first element, !P.MULTI (0), is set to zero to cause the next plot to begin
a new page. To make four plots per page with two columns and two rows, use the
following statement:

!P.MULTI = [0, 2, 2]

To reset to the default of one plot per page, set the value of !P.MULTI to 0, as shown
in the following statement:

!P.MULTI = 0
Multiple Plots on a Page Using IDL

Chapter 11: Direct Graphics Plotting 281
This figure shows four plots in a single window. For details, inspect the batch file
plot09 in the examples/doc subdirectory of the IDL distribution. Note the
following features of the plots in the figure:

1. The plot in the upper left has grid-style tick marks. This is accomplished by
setting the TICKLEN keyword equal to 1.0

2. The plot in the upper right has outward-facing tick marks. This is
accomplished by setting the TICKLEN keyword to a negative value.

3. The plot in the lower left corner has different axes on left and right, top and
bottom. This is accomplished by drawing the top and right axes separately,
using the AXIS procedure.

4. The plot in the lower right uses no default axes at all. The centered axes are
drawn with calls to the AXIS procedure.

Figure 11-13: Multiple Plots Per Page, Various Tick Marks, and Multiple Axes
Using IDL Multiple Plots on a Page

282 Chapter 11: Direct Graphics Plotting
Specifying the Location of the Plot

The plot-data window is the region of the page or screen enclosed by the axes. The
plot region is the box enclosing the plot-data window and the titles and tick
annotation.

The figure illustrates the relationship of the plot-data window, plot region, and the
entire device area. These areas are determined by the following system variables and
keyword parameters, in order of decreasing precedence:

POSITION

The POSITION keyword is accepted by the CONTOUR, MAP_SET, PLOT,
SHADE_SURF, and SURFACE routines. Its value is a four-element vector (six
elements for three-dimensional plots) containing the position of the axis endpoints:
[x0, y0, x1, y1]. Coordinates are specified in normalized coordinates or in device
coordinates if the DEVICE keyword is present.

Figure 11-14: The Plot-Data Window, Plot Region, and Device Area
Relationship
Specifying the Location of the Plot Using IDL

Chapter 11: Direct Graphics Plotting 283
!P.POSITION

!P.POSITION is the system variable equivalent of the POSITION keyword. Its value
is a four-element vector in the same form as above containing the normalized
coordinates of the plot-data window. !P.POSITION is ignored if x0 is equal to x1, (that
is, if !P.POSITION[0] EQ !P.POSITION[2]), which is the default.

!P.REGION

The !P.REGION system variable is another four-element vector in the same form as
above containing the normalized coordinates of the plot region, the rectangle
enclosing the plot-data window and annotation. It is ignored if !P.REGION [0] is
equal to !P.REGION[2].

!P.MULTI

!P.MULTI controls the number of plots per page. It is described in “Multiple Plots on
a Page” on page 280.

[XYZ]MARGIN

The [XYZ]MARGIN keywords are accepted by the AXIS, CONTOUR, PLOT,
SHADE_SURF, and SURFACE routines. The value of each of these keywords is a 2-
element array specifying the margin on the left and right sides (XMARGIN) or the
top and bottom (YMARGIN) of the plot window, in units of character size. Default
margins are 10 and 3 for the x-axis, and 4 and 2 for the y-axis. The ZMARGIN
keyword is present for consistency and is currently ignored.

![XYZ]MARGIN

![XYZ]MARGIN are the system variable equivalents of the [XYZ]MARGIN
keywords.
Using IDL Specifying the Location of the Plot

284 Chapter 11: Direct Graphics Plotting
Plotting Missing Data

The MAX_VALUE and MIN_VALUE keywords to PLOT can be used to create
missing data plots wherein bad data values are not plotted. Data values greater than
the value of the MAX_VALUE keyword or less than the value of the MIN_VALUE
keyword are treated as missing and are not plotted. The following code creates a
dataset with bad data values and plots it with and without these keywords:

; Make a 100-element array where each element is
; set equal to its index:
A = FINDGEN(100)
; Set 20 random point in the array equal to 400.
; This simulates "bad" data values above the range
; of the "real" data.
A(RANDOMU(SEED, 20)*100)=400
; Set 20 random point in the array equal to -10.
; This simulates "bad" data values below the range
; of the "real" data.
A(RANDOMU(SEED, 20)*100)=-10
; Plot the dataset with the bad values. Looks pretty bad!
PLOT, A
; Plot the dataset, but don’t plot any value over 101.
; The resulting plot looks better, but still shows spurious values:
PLOT, A, MAX_VALUE=101
; This time leave out both high and low spurious values.
; The resulting plot more accurately reflects the "real" data:
PLOT, A, MAX_VALUE=101, MIN_VALUE=0

The following plotting routines allow you to set maximum and minimum values in
this manner: CONTOUR, PLOT, SHADE_SURF, SURFACE.

In addition to the maximum and minimum values specified with the MAX_VALUE
and MIN_VALUE keywords, these plotting routines treat the IEEE floating-point
value NaN (Not A Number) as missing data automatically. (For more information on
NaN, see “Special Floating-Point Values” in Building IDL Applications.)
Plotting Missing Data Using IDL

Chapter 11: Direct Graphics Plotting 285
Date/Time Plotting

Dates and times are among the many types of information that numerical data can
represent. IDL provides a number of routines that offer specialized support for
generating, analyzing, and displaying date- and time- based data (herein referred to as
date/time data).

Julian Dates and Times

Within IDL, dates and times are typically stored as Julian dates. A Julian date is
defined to be the number of days elapsed since noon on January 1, 4713 BCE.
Following the astronomical convention, a Julian day is defined to start at 12pm
(noon). The following table shows a few examples of calendar dates and their
corresponding Julian dates.

Julian dates can also include fractional portions of a day, thereby incorporating hours,
minutes, and seconds. If the day fraction is included in a Julian date, it is represented
as a double-precision floating point value. The day fraction is computed as follows:

One advantage of using Julian dates to represent dates and times is that a given
date/time can be stored within a single variable (rather than storing the year, month,
day, hour, minute, and second information in six different variables). Because each
Julian date is simply a number, IDL’s numerical routines can be applied to Julian
dates just as for any other type of number.

Calendar Date Julian Date

January 1, 4713 B.C.E., at 12pm 0

January 2, 4713 B.C.E., at 12pm 1

January 1, 2000 at 12pm 2451545

Table 11-2: Example Julian Dates

dayFraction
hour
24.d
------------ minute

1440.d
------------------ ondssec

86400.d
---------------------+ +=
Using IDL Date/Time Plotting

286 Chapter 11: Direct Graphics Plotting
Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000, respectively.

Precision of Date/Time Data

The precision of any numerical value is defined as the smallest possible number that
can be added to that value that produces a new value different from the first.
Precision is typically limited by the data type of the variable used to store the number
and the magnitude of the number itself. Within IDL, the following guide should be
used when choosing a data format for date/time data:

• Time values that require a high precision, and that span a range of a few days
or less, should be stored as double-precision values in units of “time elapsed”
since the starting time, rather than in Julian date format. An example would be
the “seconds elapsed” since the beginning of an experiment. In this case, the
data can be treated within IDL as standard numeric data without the need to
utilize IDL’s specialized date/time features.

• Date values that do not include the time of day may be stored as long-integer
Julian dates. The Julian date format has the advantage of being compact (one
value per date) and being evenly spaced in days. As an example, January 1st
for the years 2000, 2001, and 2002 can be stored as Julian days 2451545,
2451911, and 2452276. The precision of this format is 1 day.

• Date values where it is necessary to include the time of day can be stored as
double-precision Julian dates, with the time included as a day fraction.
Because of the large magnitude of the Julian date (such as Julian day 2451545
for 1 January 2000), the precision of most Julian dates is limited to 1
millisecond (0.001 seconds).

To determine the precision of a Julian date/time value, you can use the IDL
MACHAR function:

; Set date to January 1, 2000, at 12:15pm:
julian = JULDAY(1,1,2000,12,15,0)

; Get machine characteristics:
machine = MACHAR(/DOUBLE)

; Multiply by floating-point precision:
precision = julian*machine.eps

; Convert to seconds:
PRINT, precision*86400d0
Date/Time Plotting Using IDL

Chapter 11: Direct Graphics Plotting 287
How to Generate Date/Time Data

The TIMEGEN function returns an array of double precision floating point values
that represent date/time in terms of Julian dates. The first value of the returned array
corresponds to a start date/time, and each subsequent value corresponds to the start
date/time plus that array element's one-dimensional subscript multiplied by a step
size for a given date/time unit. Unlike the other array generation routines in IDL,
TIMEGEN includes a START keyword, which is necessary if the starting date/time is
originally provided in calendar (month, day, year) form.

The following example begins with a start date of March 1, 2000 and increments
every month for a full year:

date_time = TIMEGEN(12, UNIT = 'Months', $
START = JULDAY(3, 1, 2000))

where the UNIT keyword is set to 'Months' to increment by month and the START
keyword is set to the Julian date form of March 1, 2000.

The results of the above call to TIMEGEN can be output using either of the following
methods:

1. Using the CALDAT routine to convert the Julian dates to calendar dates:

CALDAT, date_time, month, day, year
FOR i = 0, (N_ELEMENTS(date_time) - 1) DO PRINT, $

month[i], day[i], year[i], $
FORMAT = '(i2.2, "/", i2.2, "/", i4)'

2. Using the calendar format codes:

PRINT, date_time, format = '(C(CMOI2.2, "/", CDI2.2, "/", CYI))'

The resulting calendar dates are printed out as follows:

03/01/2000
04/01/2000
05/01/2000
06/01/2000
07/01/2000
08/01/2000
09/01/2000
10/01/2000
11/01/2000
12/01/2000
01/01/2001
02/01/2001
Using IDL Date/Time Plotting

288 Chapter 11: Direct Graphics Plotting
The TIMEGEN routine contains several keywords to provide specific date/time data
generation. For more information, see the TIMEGEN in the IDL Reference Guide.

Displaying Date/Time Data on an Axis in Direct Graphics

You can display date/time data on plots, contours, and surfaces through the tick
settings of the date/time axis. Date/time data can be displayed on any axis (x, y or z).
The date/time data is stored as Julian dates, but the LABEL_DATE routine and axis
keywords allow you to display this data as calendar dates. The following examples
show how to display one-dimensional and two-dimensional date/time data.

Displaying Date/Time Data on a Plot Display

Date/time data usually comes from measuring data values at specific times. For
example, the displacement (in inches) of an object might be recorded at every second
for 37 seconds after the initial recording of 59 minutes and 30 seconds after 2 o'clock
pm (14 hundred hours) on the 30th day of March in the year 2000 as follows

number_samples = 37
date_time = TIMEGEN(number_samples, UNITS = 'Seconds', $

START = JULDAY(3, 30, 2000, 14, 59, 30))
displacement = SIN(10.*!DTOR*FINDGEN(number_samples))

Normally, this type of data would be imported into IDL from a data file. However,
this section is designed specifically to show how to display date/time data, not how to
import data from a file; therefore, the data for this example is created with the above
IDL commands.

Before displaying this one-dimensional data with the PLOT routine, the format of the
date/time values is specified through the LABEL_DATE routine as follows

date_label = LABEL_DATE(DATE_FORMAT = ['%I:%S'])

where %I represents minutes and %S represents seconds.

The resulting format is specified in the call to the PLOT routine with the
XTICKFORMAT keyword:

PLOT, date_time, displacement, /XSTYLE, $
; displaying titles.
TITLE = 'Measured Signal', $
XTITLE = 'Time (seconds)', $
YTITLE = 'Displacement (inches)', $
; applying date/time formats to X-axis labels.
XTICKFORMAT = 'LABEL_DATE', $
XTICKUNITS = 'Time', $
XTICKINTERVAL = 5
Date/Time Plotting Using IDL

Chapter 11: Direct Graphics Plotting 289
The XTICKUNITS keyword is set to note the tick labels contain date/time data. The
XTICKINTERVAL keyword is set to place the major tick marks at every five second
interval. These keyword settings produce the following results:

The above display shows the progression of the date/time variable, but it does not
include all of the date/time data we generated with the TIMEGEN routine. This data
also includes hour, month, day, and year information. IDL can display this
information with additional levels to the date/time axis. You can control the number
of levels to draw and the units used at each level with the XTICKUNITS keyword.
You can specify the formatting for these levels by changing the DATE_FORMAT
keyword setting to the LABEL_DATE routine:

date_label = LABEL_DATE(DATE_FORMAT = $
['%I:%S', '%H', '%D %M, %Y'])

Figure 11-15: Displaying Date/Time data with PLOT
Using IDL Date/Time Plotting

290 Chapter 11: Direct Graphics Plotting
where %H represents hours, %D represents days, %M represents months, and %Y
represents years. Notice DATE_FORMAT is specified with a three element vector.
Date/time data can be displayed on an axis with three levels. The format of these
levels are specified through this vector.

In this example, the first level (closest to the axis) will contain minute and second
values separated by a colon (%I:%S). The second level (just below the first level) will
contain the hour values (%H). The third level (the final level farthest from the axis)
will contain the day and month values separated by a space and year value separated
from the day and month values by a comma (%D %M, %Y). For more information,
see the description of the LABEL_DATE routine in the the IDL Reference Guide.

Besides the above change to the LABEL_DATE routine, you must also change the
settings of the keywords to the PLOT routine to specify a multiple level axis:

PLOT, date_time, displacement, /XSTYLE, $
; displaying titles.
TITLE = 'Measured Signal', $
XTITLE = 'Time (seconds)', $
YTITLE = 'Displacement (inches)', $
; applying date/time formats to X-axis labels.
POSITION = [0.2, 0.25, 0.9, 0.9], $
XTICKFORMAT = ['LABEL_DATE', 'LABEL_DATE', 'LABEL_DATE'], $
XTICKUNITS = ['Time', 'Hour', 'Day'], $
XTICKINTERVAL = 5

The POSITION keyword is set to allow the resulting display to contain all three
levels and the title of the date/time axis. The XTICKFORMAT is now set to a string
array containing an element for each level of the axis. The XTICKUNITS keyword is
set to note the unit of each level. These keyword settings produce the following
results:
Date/Time Plotting Using IDL

Chapter 11: Direct Graphics Plotting 291
Notice the three levels of the X-axis. These levels are arranged as specified by the
previous call to the LABEL_DATE routine.

Displaying Date/Time Data on a Contour Display

Another possible example may be the surface temperature (in degrees Celsius) of
each degree of a single circle on a sphere recorded at every second for 37 seconds
after the initial recording of 59 minutes and 30 seconds after 2 o'clock pm (14
hundred hours) on the 30th day of March in the year 2000:

number_samples = 37
date_time = TIMEGEN(number_samples, UNITS = 'Seconds', $

START = JULDAY(3, 30, 2000, 14, 59, 30))
angle = 10.*FINDGEN(number_samples)
temperature = BYTSCL(SIN(10.*!DTOR* $

FINDGEN(number_samples)) # COS(!DTOR*angle))

Since the final contour display will be filled, we should define a color table:

Figure 11-16: Displaying Three Levels of Date/Time data with PLOT
Using IDL Date/Time Plotting

292 Chapter 11: Direct Graphics Plotting
DEVICE, DECOMPOSED = 0
LOADCT, 5

The call to the DEVICE command with the DECOMPOSED keyword set to zero
allows color tables to be used on TrueColor displays, which may be the default
setting on some systems. The call to the LOADCT routine loads the Standard
Gamma-II (number 5) color table, which is a part of IDL's libraries.

As with the one-dimensional case, the format of the date/time values is specified
through the LABEL_DATE routine as follows

date_label = LABEL_DATE(DATE_FORMAT = $
['%I:%S', '%H', '%D %M, %Y'])

where %I represents minutes, %S represents seconds, %H represents hours, %D
represents days, %M represents months, and %Y represents years.

The first level (closest to the axis) will contain minute and second values separated
by a colon (%I:%S). The second level (just below the first level) will contain the hour
values(%H). The third level (the final level farthest from the axis) will contain the
day and month values separated by a space and year value separated from the day and
month values by a comma (%D %M, %Y).

The resulting format is specified by using the CONTOUR routine with the
XTICKFORMAT keyword:

CONTOUR, temperature, angle, date_time, $
; specifying contour levels and fill colors.
LEVELS = BYTSCL(INDGEN(8)), /XSTYLE, /YSTYLE, $
C_COLORS = BYTSCL(INDGEN(8)), /FILL, $
; displaying titles.
TITLE = 'Measured Temperature (degrees Celsius)', $
XTITLE = 'Angle (degrees)', $
YTITLE = 'Time (seconds)', $
; applying date/time formats to X-axis labels.
POSITION = [0.25, 0.2, 0.9, 0.9], $
YTICKFORMAT = ['LABEL_DATE', 'LABEL_DATE', 'LABEL_DATE'], $
YTICKUNITS = ['Time', 'Hour', 'Day'], $
YTICKINTERVAL = 5, $
YTICKLAYOUT = 2

; Applying contour lines over the original contour display.
CONTOUR, temperature, angle, date_time, /OVERPLOT, $

LEVELS = BYTSCL(INDGEN(8))

As in the plot example, the POSITION keyword is set to allow the resulting display
to contain all three levels and the title of the date/time axis. The YTICKUNITS
keyword is set to note the unit of each level. And the YTICKINTERVAL keyword is
set to place the major tick marks at every five second interval.
Date/Time Plotting Using IDL

Chapter 11: Direct Graphics Plotting 293
This example also contains the YTICKLAYOUT keyword. By default, this keyword
is set to 0, which provides the date/time layout shown in the plot example. In this
example, YTICKLAYOUT is set to 2, which rotates and boxes the tick labels to
provide the following results:

Using System Variables to Display Date/Time Data

The settings we used to display our date/time data could have been specified through
system variables instead of keywords. The following table shows the relationship
between these keywords and their system variables:

Figure 11-17: Displaying Date/Time Data with CONTOUR

Keywords System Variables

[XYZ]TICKUNITS ![XYZ].TICKUNITS

[XYZ]TICKINTERVAL ![XYZ].TICKINTERVAL

[XYZ]TICKLAYOUT ![XYZ].TICKLAYOUT

Table 11-3: Relationship Between Keywords and System Variables
Using IDL Date/Time Plotting

294 Chapter 11: Direct Graphics Plotting
Usually, keywords are used more frequently than system variables, but system
variables are better when trying to establish a consistent display style. For example,
we could have established a date/time axis style with these system variables before
producing our previous displays:

; Establishing an axis style.
!X.TICKFORMAT = ['LABEL_DATE', 'LABEL_DATE', 'LABEL_DATE']
!X.TICKUNITS = ['Time', 'Hour', 'Day']
!X.TICKINTERVAL = 5
!X.TICKLAYOUT = 2
; Displaying data.
PLOT, date_time, displacement, /XSTYLE, $

TITLE = 'Measured Signal', $
XTITLE = 'Time (seconds)', $
YTITLE = 'Displacement (inches)', $
POSITION = [0.2, 0.7, 0.9, 0.9]

CONTOUR, temperature, date_time, angle, /FILL, $
LEVELS = BYTSCL(INDGEN(8)), /XSTYLE, /YSTYLE, $
C_COLORS = BYTSCL(INDGEN(8)), /NOERASE, $
TITLE = 'Measured Temperature (degrees Celsius)', $
XTITLE = 'Angle (degrees)', $
YTITLE = 'Time (seconds)', $
POSITION = [0.2, 0.25, 0.9, 0.45]

CONTOUR, temperature, date_time, angle, /OVERPLOT, $
LEVELS = BYTSCL(INDGEN(8))

!X.TICKLAYOUT = 0
!X.TICKINTERVAL = 0
!X.TICKUNITS = ''
!X.TICKFORMAT = ''

Notice these system variables are set to their default values after the two displays are
shown. When using system variables instead of keywords, remember to reset the
system variables back to their default values. The above example produces the
following results:
Date/Time Plotting Using IDL

Chapter 11: Direct Graphics Plotting 295
Figure 11-18: Date/Time Axis Style Established With System Variables
Using IDL Date/Time Plotting

296 Chapter 11: Direct Graphics Plotting
Using the AXIS Procedure

The AXIS procedure draws and annotates an axis. It optionally saves the scaling
established by the axis for use by subsequent graphics procedures. It can be used to
add additional axes to plots or to draw axes at a specified position.

The AXIS procedure accepts the set of plotting keyword parameters that govern the
scaling and appearance of the axes. Additionally, the keyword parameters XAXIS,
YAXIS, and ZAXIS specify the orientation and position (if no position coordinates
are present) of the axis. The value of these parameters are 0 for the bottom or left axis
and 1 for the top or right. The tick marks and their annotation extend away from the
plot window. For example, specify YAXIS = 1 to draw a y-axis on the right of the
window.

The optional keyword parameter SAVE saves the data-scaling parameters established
for the axis in the appropriate axis system variable, !X, !Y, or !Z. The call to AXIS is
as follows:

AXIS[[, X, Y], Z]

where X, Y, and optionally Z specify the coordinates of the axis. Any of the coordinate
systems can be used by including the appropriate coordinate keyword in the call. The
coordinate corresponding to the axis direction is ignored. When specifying an x-axis,
the x-coordinate parameter is ignored, but must be present if there is a y coordinate.

Example: The AXIS Procedure

The figure shown below illustrates using AXIS to draw axes with a different scale,
opposite the main x- and y-axes. The plot is produced using PLOT with the bottom
and left axes annotated and scaled in units of days and degrees Fahrenheit. The
XMARGIN and YMARGIN keyword parameters are specified to allow additional
room around the plot window for the new axes. The keyword parameters XSTYLE =
8 and YSTYLE = 8 inhibit drawing the top and right axes.
Using the AXIS Procedure Using IDL

Chapter 11: Direct Graphics Plotting 297
Next, the AXIS procedure is called to draw the top, XAXIS = 1, axis, labeled in
months. Eleven tick intervals with 12 tick marks are drawn. The x value of each
monthly tick mark is the day of the year that is approximately the middle of the
month. Tick-mark names come from the MONTH string array.

The right y-axis, YAXIS = 1, is drawn in the same manner. The new y-axis range is
set by converting the original y-axis minimum and maximum values, saved by PLOT
in !Y.CRANGE, from Fahrenheit to Celsius, using the formula C = 5(F-32)/9. The
keyword parameter YSTYLE = 1 forces the y-axis range to match the given range
exactly. The program is as follows:

; Plot the data, omit right and top axes:
PLOT, DAY, TEMP, /YNOZERO, $

SUBTITLE = 'Denver Average Temperature', $
XTITLE = 'Day of Year', $
YTITLE = 'Degrees Fahrenheit', $
XSTYLE=8, YSTYLE=8, XMARGIN=[8, 8], YMARGIN=[4, 4]

; Draw the top x-axis, supplying labels, etc.
; Make the characters smaller so they will fit:
AXIS, XAXIS=1, XTICKS=11, XTICKV=DAY, XTICKN=MONTH, $

XTITLE='Month', XCHARSIZE = 0.7
; Draw the right y-axis. Scale the current y-axis minimum
; values from Fahrenheit to Celsius and make them

Figure 11-19: A plot created with the AXIS procedure
Using IDL Using the AXIS Procedure

298 Chapter 11: Direct Graphics Plotting
; the new min and max values. Set YSTYLE=1 to make axis exact.
AXIS, YAXIS=1, YRANGE = (!Y.CRANGE-32)*5./9., YSTYLE = 1, $

YTITLE = 'Degrees Celsius'

The code above is included in the batch file plot09 in the examples/doc
subdirectory of the IDL distribution.

Using AXIS with Polar Plots

If the POLAR keyword parameter is set, the IDL PLOT procedure converts its
coordinates from polar to Cartesian coordinates when plotting. The first parameter to
plot is the radius, R, and the second is the angle θ (expressed in radians). Polar plots
are produced using the standard axis and label styles, with box axes enclosing the
plot area.

The following figure illustrates using AXIS to draw centered axes, dividing the plot
window into the four quadrants centered about the origin. This method uses PLOT to
plot the polar data and to establish the coordinate scaling, but suppresses the axes.
Next, two calls to AXIS add the x- and y-axes, drawn through data coordinate (0, 0).

; Make a radius vector:
R = FINDGEN(100)
; Make a vector:
THETA = R/5
; Plot the data, suppressing the axes by setting their styles to 4:

Figure 11-20: Using AXIS for polar plots
Using the AXIS Procedure Using IDL

Chapter 11: Direct Graphics Plotting 299
PLOT, R, THETA, SUBTITLE='Polar Plot', XSTY=4, YSTY=4, /POLAR
AXIS, 0, 0, XAX=0
; Draw the x and y axes through (0, 0):
AXIS, 0, 0, YAX=0

The code above is included in the batch file plot09 in the examples/doc
subdirectory of the IDL distribution.
Using IDL Using the AXIS Procedure

300 Chapter 11: Direct Graphics Plotting
Using the CURSOR Procedure

The CURSOR procedure reads the position of the interactive graphics cursor of the
current graphics device. It enables the graphic cursor on the device, optionally waits
for the user to move it and/or press a locator button to terminate the operation (or type
a character if the device has no buttons), and then reports the cursor position.

Note, however, that CURSOR should not be used with draw widgets, created by the
WIDGET_DRAW function. If you need to find the position of the mouse or status of
mouse buttons in a draw widget, set the BUTTON_EVENTS and
MOTION_EVENTS keywords to WIDGET_DRAW, then examine the events
returned by your draw widget. See WIDGET_DRAW in the IDL Reference Guide for
more information.

The CURSOR procedure is called as follows:

CURSOR, X, Y [, WAIT]

where x and y are the named variables that receive the cursor position. Normally, the
position is reported in data coordinates, but the DATA, DEVICE, and NORMAL
keywords can be used to explicitly specify the coordinate system.

See CURSOR in the IDL Reference Guide for details.

When CURSOR returns, the button field of the system variable !MOUSE is set to
the button status. Each mouse button is assigned a bit in the button field. Bit 0 is the
leftmost button (value = 1), bit 1 is the middle button (value = 2), and bit 3 is the
rightmost button (value = 4) for the typical three-button mouse. See !MOUSE in the
IDL Reference Guide for details.

Simple Interactive Examples

The following two programs demonstrate simple applications of the interactive
graphics cursor and the CURSOR procedure. The code for both routines is located in
the file plot10.pro, located in the examples/doc subdirectory of the IDL
distribution. You can also create either routine at the IDL command line by starting
with the .RUN command and entering each line individually.

The first routine is a simple drawing program. Straight lines are connected to
positions marked with the left or middle mouse buttons until the right button is
pressed.

PRO DRAW
; Start with a blank screen:
ERASE
Using the CURSOR Procedure Using IDL

Chapter 11: Direct Graphics Plotting 301
; Get the initial point in normalized coordinates:
CURSOR, X, Y, /NORMAL, /DOWN
; Repeat until right button is pressed. Get the second point.
; Draw the line. Make the current second point be the new first.
WHILE (!MOUSE.button NE 4) DO BEGIN

CURSOR, X1, Y1, /NORM, /DOWN
PLOTS,[X,X1], [Y,Y1], /NORMAL
X = X1 & Y = Y1

ENDWHILE
END

The second simple procedure can be used to label plots using the cursor to position
the text:

;Text is the string to be written on the screen:
PRO LABEL, TEXT

; Ask the user to mark the position:
PRINT, 'Use the mouse to mark the text position:'
; Get the cursor position after pressing any button:
CURSOR, X, Y, /NORMAL, /DOWN
; Write the text at the specified position.
; The NOCLIP keyword is used to ensure that
; the text will appear even if it is outside
; the plotting region.
XYOUTS, X, Y, TEXT, /NORMAL, /NOCLIP

END

To place annotation on a device with an interactive pointer, call this procedure with
the command:

ANNOTATE, 'Text for label'

Next, move the pointer device (mouse, cursor, or joystick) to the desired spot, and
press the locator button. Consider how you might augment the LABEL procedure to
allow you to specify the size and font of the annotation text.
Using IDL Using the CURSOR Procedure

302 Chapter 11: Direct Graphics Plotting
Using the CURSOR Procedure Using IDL

Chapter 12:

Plotting Multi-
Dimensional Arrays

The following topics are covered in this chapter:
Overview . 304
Contour Plots . 305
Overlaying Images and Contour Plots . . . 312
Additional Contour Options 316
The SURFACE Procedure 320

Three-Dimensional Graphics 323
Three-Dimensional Transformations 333
Shaded Surfaces . 339
Volume Visualization 342
References . 346
Using IDL 303

304 Chapter 12: Plotting Multi-Dimensional Arrays
Overview

This chapter describes the facilities for drawing representations of two-dimensional
arrays. The two intrinsic procedures for the display of arrays are CONTOUR and
SURFACE. Procedures for displaying two-dimensional arrays in the form of images,
using color or grayscale pixels, are discussed in Chapter 14, “Image Display
Routines”.

CONTOUR and SURFACE both use line graphics to depict the value of a two-
dimensional array. As its name implies, CONTOUR draws contour plots.

SURFACE depicts the surface created by interpreting each element value as an
elevation. These three-dimensional, wire-mesh surface plots can have almost any
rotation about the x- and z-axes (the data z-axis must project parallel to the device’s y-
axis).

Three-dimensional graphics, coordinate systems, and transformations also are
included in this chapter. Almost all of the information concerning coordinate
systems, keyword parameters, and system variables discussed in Chapter 11, “Direct
Graphics Plotting”, apply to CONTOUR and SURFACE as well.

Running the Example Code

The examples in this chapter are all written to take advantage of IDL Direct Graphics.
Some of the example code used in this chapter is part of the IDL distribution. All of
the files mentioned are located in the examples/doc subdirectory of the IDL
distribution. By default, this directory is part of IDL’s path; if you have not changed
your path, you will be able to run the examples as described here. See “!PATH” in
Appendix D of the IDL Reference Guide for information on IDL’s path.
Overview Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 305
Contour Plots

The CONTOUR procedure draws contour plots from data stored in a rectangular
array. In its simplest form, CONTOUR makes a contour plot given a two-
dimensional array of z values. In more complicated forms, CONTOUR accepts, in
addition to z, arrays containing the x and y locations of each column, row, or point,
plus many keyword parameters. In more sophisticated applications, the output of
CONTOUR can be projected from three dimensions to two dimensions,
superimposed over an image, or combined with the output of SURFACE. The basic
call to CONTOUR is as follows:

CONTOUR, Z

where Z is a two-dimensional array. This call labels the x- and y-axes with the
subscript along each dimension. For example, when contouring a 10 × 20 array, the x-
axis ranges from 0 to 9, and the y-axis ranges from 0 to 19.

You can explicitly specify the x and y locations of each cell as follows:

CONTOUR, Z, X, Y

where the X and Y arrays can be either vectors or two-dimensional arrays of the same
size as Z. If they are vectors, the element zi,j has a coordinate location of (xi, yj).
Otherwise, if the x and y arrays are two-dimensional, the element zi,j has the location
(xi,j, yi,j). Thus, vectors should be used if the x location of zi,j does not depend upon j
and the y location of zi,j does not depend upon i.

Dimensions must be compatible. In the one-dimensional case, X must have a
dimension equal to the number of columns in Z, and Y must have a dimension equal
to the number of rows in Z. In the two- dimensional case, all three arrays must have
the same dimensions.

IDL uses linear interpolation to determine the x and y locations of the contour lines
that pass between grid elements. The cells must be regular in that the x and y arrays
must be monotonic over rows and columns, respectively. The lines describing the
quadrilateral enclosing each cell and whose vertices are (xi,j, yi,j), (xi+1,j, yi+1,j),
(xi+1,j+1, yi+1,j+1), and (xi,j+1, yi,j+1) must intersect only at the four corners and the
quadrilateral must not contain other nodes.

See CONTOUR in the IDL Reference Guide for a complete list of CONTOUR’s
parameters and keywords.
Using IDL Contour Plots

306 Chapter 12: Plotting Multi-Dimensional Arrays
Contouring Methods

In order to provide a wide range of options, CONTOUR uses one of two contouring
algorithms. The algorithm used depends on the keywords specified, and is one of the
two following methods.

Cell Drawing

The first algorithm, used by default, examines each array cell and draws all contours
emanating from that cell before proceeding to the next cell. This method is efficient
in terms of computer resources, but does not allow options such as contour labeling
or smoothing.

Contour Following

The second method searches for each contour line, then follows the line until it
reaches a boundary or closes. This method gives better looking results with dashed
linestyles and allows contour labeling and bi-cubic spline interpolation, but requires
more computer time. The contour following method is used if any of these keywords
are specified: C_ANNOTATION, C_CHARSIZE, C_LABELS, CLOSED,
FOLLOW, PATH_FILENAME, or DOWNHILL.

Note
Due to their differing algorithms, these two methods will often draw slightly
different, yet correct, contour maps for the same data. This difference is a direct
result of the fact that there is often more than one valid way to draw contours and
should not be a cause for concern.

Example: Maroon Bells Peaks

Digital elevation data of the Maroon Bells area, near Aspen, Colorado, are used to
illustrate the CONTOUR procedure. The data set was obtained from a United States
Geological Survey Digital Elevation Model tape. This data provides terrain elevation
data over a 7.5-minute square (approximately 11 × 13.7 kilometers at the latitude of
Maroon Bells), with 30-meter sampling.

The data are contained in a 360 × 460 array A, sampled in 30-meter square intervals,
measured in Universal Transverse Mercator (UTM) coordinates. The rectangular
array is not completely filled with data because the 7.5-minute square is not perfectly
oriented to the UTM grid system. Missing data are represented as zeroes. Elevation
measurements range from 2658 to 4241 meters or from 8720 to 13,914 feet.
Contour Plots Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 307
The Maroon Bells data is used in a number of examples in this chapter, and is
included in an IDL SAVE file called marbells.dat in the examples/data
subdirectory of the IDL distribution. To restore the save file, issue the following
commands at the IDL prompt (change the path separator characters as necessary for
your platform):

CD, !DIR+'/examples/data'
RESTORE, 'marbells.dat'

The batch file cntour01, located in the examples/doc subdirectory of the IDL
distribution, restores this data and defines several variables used in the examples in
this chapter.

This command creates an IDL variable named elev that contains the 360 x 460
integer array.

The figure below is the result of applying the CONTOUR procedure to the data,
using the default settings:

CONTOUR, elev

A number of problems are apparent with this simple contour plot.

• IDL selected six contour levels, by default, for the elevation from 0 to 4241;
that’s roughly 4241divided into 7 intervals or approximately 605 meters in
elevation between contour levels. The levels are 605, 1250, ..., 3635 meters,
even though the range of valid data is from 2658 to 4241 meters. This is
because the missing data values of 0 were considered when selecting the

Figure 12-1: Simple Contour Plot of Maroon Bells
Using IDL Contour Plots

308 Chapter 12: Plotting Multi-Dimensional Arrays
intervals. It is generally more appropriate to select contour levels only within
the range of valid data.

• The vertical contours along the left edge are an invalid artifact due to
contouring missing data and should not be present.

• For most display systems and for contour intervals of approximately 200
meters, the data has too many samples in the x-y direction. This oversampling
has two adverse effects: the contours appear jagged, and a large number of
short vectors are produced.

• The axes are labeled by point number, but should be in UTM coordinates.

• It is difficult to visualize the terrain and to discern maxima from minima
because each contour is drawn with the same type of line.

The above problems are readily solved using the following simple techniques:

• Specify the contour levels directly using the LEVELS keyword parameter.
Selecting contour intervals of 250 meters, at elevation levels of [2750, 3000,
3250, 3500, 3750, 4000], results in six levels within the range of valid data.

• Change the missing data value to a value well above the maximum valid data
value, then use the MAX_VALUE keyword parameter to exclude missing
points. In this example, we set missing data values to one million with the
following statement:

elev(WHERE(elev EQ 0)) = 32767

Note
32767 is the maximum allowable 16-bit integer.

• Use the REBIN function to decrease the sampling in x and y by a factor of 5:

new = REBIN(elev, 360/5, 460/5)

This smooths the contours, because the call to REBIN averages 52=25 bins when
resampling. The number of vectors transmitted to the display also are decreased by a
factor of approximately 25. The variable B is now a 72 × 92 array.

Care is taken in the second step to ensure that the missing data are not confused with
valid data after REBIN is applied. As in this example, REBIN averages bins of 52=25
elements, the missing data value must be set to a value of at least 25 times the
maximum valid data value. After applying REBIN, any cell with a missing original
data point will have a value of at least 106/25 = 40000, well over the largest valid
data value of approximately 4,500.
Contour Plots Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 309
The x and y vectors are constructed containing the UTM coordinates for each row and
column. From the USGS data tape, the UTM coordinate of the lower-left corner of
the array is (326,850: 4,318,500) meters. As the data spacing is 30 meters in both
directions, the x and y vectors, in kilometers, are easily formed using the FINDGEN
function, as shown in the example below.

Contour levels at each multiple of 500 meters (every other level) are drawn with a
solid linestyle, while levels that fall between are drawn with a dotted line. In addition,
the 4000-meter contour is drawn with a triple thick line, emphasizing the top contour.

The result of these improvements is shown in the figure below.

This figure was produced with the following IDL statements:

; Restore variables:
@cntour01
; Set missing data points to a large value:
elev (WHERE (elev EQ 0)) = 1E6
; REBIN down to a 72 x 92 matrix:
new = REBIN(elev, 360/5, 460/5)

Figure 12-2: Improved Contour Plot
Using IDL Contour Plots

310 Chapter 12: Plotting Multi-Dimensional Arrays
; Make the x and y vectors specifying the position
; of each column and row.
X = 326.850 + .030 * FINDGEN(72)
Y = 4318.500 + .030 * FINDGEN(92)
; Make the plot, specifying the contour levels,
; missing data value, linestyles, etc.
; Set the STYLE keywords to 1, obtaining exact axes.
CONTOUR, new, X, Y, LEVELS = 2750 + FINDGEN(6) * 250., $

XSTYLE = 1, YSTYLE = 1, YMARGIN = 5, MAX_VALUE = 5000, $
C_LINESTYLE = [1, 0], $
C_THICK = [1, 1, 1, 1, 1, 3], $
TITLE = 'Maroon Bells Region', $
SUBTITLE = '250 meter contours', $
XTITLE = 'UTM Coordinates (KM)'

If you prefer not to enter the code by hand, run the batch file cntour02 with the
following command at the IDL prompt:

@cntour02

See “Running the Example Code” on page 304 if IDL does not find the batch file.

The figure below illustrates the data displayed as a grayscale image. Higher
elevations are white. This image demonstrates that contour plots do not always
provide the best qualitative visualization of many two-dimensional data sets.
Contour Plots Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 311
Figure 12-3: Maroon Bells Data Displayed as an Image
Using IDL Contour Plots

312 Chapter 12: Plotting Multi-Dimensional Arrays
Overlaying Images and Contour Plots

Superimposing an image and its contour plot combines the best of both worlds: the
image allows easy visualization and the contour lines provide a semi-quantitative
display. The programs presented in the rest of this section are for advanced
computing only.

A combined contour and image display, such as that discussed in this section, can be
created with the IMAGE_CONT procedure. The following material is intended to
illustrate the ways in which images and graphics can be combined using IDL.

The technique used to overlay plots and images depends on whether or not the device
is able to represent pixels of variable size, as does PostScript, or if it has pixels of a
fixed size. If the device does not have scalable pixels, the image must be resized to fit
within the plotting area if it is not already of a size suitable for viewing. This leads to
three separate cases that are illustrated in the following examples.

Overlaying with Scalable Pixels

Certain devices, notably PostScript, can display pixels of varying sizes. With these
devices, it is easy to set the size and position of an image so that it exactly overlays
the plot window. In creating the next figure, the actual dimensions of the contour plot
window (contained in the !X.WINDOW and !Y.WINDOW system variables) were
used to calculate the new size of the image.
Overlaying Images and Contour Plots Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 313
Note
In order to do this successfully, you must establish the size of the plot window
before scaling the image. This means that you must make a call to CONTOUR
before displaying the image, to set the window size, and another call to CONTOUR
after displaying the image, to draw the contour lines on top of the image data.

Inspect the batch file cntour03 located in the examples/doc subdirectory of the
IDL distribution to see how the figure was created. Note that the aspect ratio of the
image was changed to fit that of the plot window. To retain the original image aspect
ratio, the plot window must be resized to an identical aspect ratio using the
POSITION keyword parameter.

Figure 12-4: Overlay of Image and Contour Plots
Using IDL Overlaying Images and Contour Plots

314 Chapter 12: Plotting Multi-Dimensional Arrays
Overlaying with Fixed Pixels

If the pixel size is fixed (as is true on most displays), we can either resize the image to
fit the plotting window or size the plotting window to fit the image dimensions.

Method 1: Scale the Image to Fit the Display

We can use the CONGRID function to create an image of the same size as the
plotting window. The REBIN function also can be used to resample the original
image if the plot window dimensions are an integer multiple or factor of the original
image dimensions. REBIN is always faster than CONGRID. The following IDL
procedure creates an image of the same size as the window, displays it, then overlays
the contour plot.

; Restore variables:
@cntour01
; Set missing data points to a large value:
elev (WHERE (elev EQ 0)) = 1E6
; REBIN down to a 72 x 92 matrix.
new = REBIN(elev, 360/5, 460/5)
; Scale image intensities:
image = BYTSCL(elev, MIN=2658, MAX=4241)
; Before displaying the image, use the CONTOUR command
; to create the appropriate plot window.
; The plot window must be created before re-sizing
; the image data.
; Use the NODATA keyword to inhibit actually drawing
; the contour plot.
CONTOUR, new, X, Y, LEVELS = 2750 + FINDGEN(6) * 250., $

MAX_VALUE = 5000, XSTYLE = 1, YSTYLE = 1, $
TITLE = 'Maroon Bells Region', $
SUBTITLE = '250 meter contours', $
XTITLE = 'UTM Coordinates (KM)', /NODATA

; Get size of plot window in device pixels.
PX = !X.WINDOW * !D.X_VSIZE
PY = !Y.WINDOW * !D.Y_VSIZE
; Desired size of image in pixels.
SX = PX[1] - PX[0] + 1
SY = PY[1] - PY[0] + 1
; Display the image with its lower-left corner at
; the origin of the plot window and with its size
; scaled to fit the plot window.
TVSCL, CONGRID(image, SX, SY), PX[0], PY[0])
CONTOUR, new, X, Y, LEVELS = 2750 + FINDGEN(6) * 250., $

MAX_VALUE = 5000, XSTYLE = 1, YSTYLE = 1, $
TITLE = 'Maroon Bells Region', $
SUBTITLE = '250 meter contours', $
XTITLE = 'UTM Coordinates (KM)', /NOERASE
Overlaying Images and Contour Plots Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 315
; Write the contours over the image, being sure
; to use the exact axis styles so that the contours
; fill the plot window. Inhibit erasing.

If you prefer not to enter the code by hand, run the batch file cntour04 with the
following command at the IDL prompt:

@cntour04

See “Running the Example Code” on page 304 if IDL does not find the batch file.

Method 2: Scale the Display to Fit the Image

If the image is already close to the proper display size, it is simpler and more efficient
to change the plot window size to that of the image. The following procedure displays
the image at the window origin, then sets the plot window to the image size, leaving
its origin unchanged.

; Restore variables:
@cntour01
; Set missing data points to a large value:
elev (WHERE (elev EQ 0)) = 1E6
; REBIN down to a 72 x 92 matrix.
new = REBIN(elev, 360/5, 460/5)
; Scale image intensities.
image = BYTSCL(elev, MIN=2658, MAX=4241)
; Get size of plot window in device pixels.
PX = !X.WINDOW * !D.X_VSIZE
PY = !Y.WINDOW * !D.Y_VSIZE
; Get the size of the image.
SZ = SIZE(image)
; Display the image with its lower-left corner
; at the origin of the plot window.
TVSCL, image, PX[0], PY[0]
; Write the contours over the image, being sure to use
; the exact axis styles so that the contours fill the plot
; window. Inhibit erasing.
CONTOUR, new, X, Y, XSTYLE = 1, YSTYLE = 1, $

POSITION = [PX[0], PY[0], PX[0]+SZ[1]-1, PY[0]+SZ[2]-1], $
LEVELS = 2750 + FINDGEN(6) * 250., MAX_VALUE = 5000, $
TITLE = 'Maroon Bells Region', $
SUBTITLE = '250 meter contours', $
XTITLE = 'UTM Coordinates (KM)', /NOERASE, /DEVICE

If you prefer not to enter the code by hand, run the batch file cntour05 with the
following command at the IDL prompt:

@cntour05

See “Running the Example Code” on page 304 if IDL does not find the batch file.
Using IDL Overlaying Images and Contour Plots

316 Chapter 12: Plotting Multi-Dimensional Arrays
Additional Contour Options

In addition to the abilities of CONTOUR demonstrated above, there are several
options that depend upon the use of the contour following algorithm. These options
are as follows:

Labeling Contours

The C_ANNOTATION, C_CHARSIZE, and C_LABELS keywords are used to
control contour labeling. Using them, possibly in conjunction with the LEVELS
keyword, it is possible to specify which contours should be labeled, the size of the
labels, and the actual labels that should be used.

In the following discussion, a variable named DATA is contoured. This variable
contains uniformly distributed random numbers obtained using the following
statement:

SEED = 20 & DATA = RANDOMU(SEED, 6, 6)

To label contours using the defaults for label size and contours to label, it is sufficient
to select the FOLLOW keyword. In this case, CONTOUR labels every other contour
using the default label size (three-fourths of the plot axis label size). Each contour is
labeled with its value.

The preceding figure was produced using the following statement:

Figure 12-5: Simple Labeled Contour Plot
Additional Contour Options Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 317
CONTOUR, /FOLLOW, DATA

The C_CHARSIZE keyword is used to specify the size of the characters used for
labeling in the same manner that SIZE is used to control plot axis label size. The
C_LABELS keyword can be used to select the contours to be labeled. For example,
suppose that we want to contour the variable DATA at 0.2, 0.5, and 0.8, and we want
all three levels labeled. In addition, we wish to make each label larger, and use
hardware fonts. This can be accomplished with the statement below.

CONTOUR, LEVEL=[0.2, 0.5, 0.8], C_LABELS=[1, 1, 1], $
C_CHARSIZE = 1.25, DATA, FONT = 0

The result is the plot on the left in the figure below.

Finally, it is possible to specify the text to be used for the contour labels using the
C_ANNOTATION keyword, as shown in the statements below.

CONTOUR, LEVEL=[0.2, 0.5, 0.8], C_LABELS=[1, 1, 1], $
C_ANNOTATION = ["Low", "Medium", "High"], DATA, FONT=0

The result is the plot on the right in the figure below.

Smoothing Contours

The MIN_CURVE_SURF function can be used to smoothly interpolate both
regularly and irregularly sampled surfaces before contouring. This function replaces
the older SPLINE keyword to CONTOUR, which was inaccurate and is no longer
supported. MIN_CURVE_SURF interpolates the entire surface to a relatively fine
grid before drawing the contours.

Figure 12-6: Label Size and Levels Specified (left), Explicitly Specified Labels
(right)
Using IDL Additional Contour Options

318 Chapter 12: Plotting Multi-Dimensional Arrays
See CONTOUR in the IDL Reference Guide for an example using the
MIN_CURVE_SURF function. See also MIN_CURVE_SURF in the IDL Reference
Guide for further details.

The following short example shows the difference between a smoothed and an
unsmoothed contour plot:

;Create a simple dataset:
data = RANDOMU(seed, 7, 7)
;Plot the unsmoothed data:
CONTOUR, data
;Plot the smoothed data:
CONTOUR, MIN_CURVE_SURF(data)

Filling Contours

Set the FILL keyword to produce a filled contour plot. The contours are filled with
solid or line-filled polygons. For solid polygons, use the C_COLOR keyword to
specify the color index of the polygons for each contour level. For line fills, use
C_ORIENTATION, C_SPACING, C_COLOR, C_LINESTYLE, and/or
C_THICK to specify attributes for the lines.

If the current device is not a pen plotter, each polygon is erased to the background
color before the fill lines are drawn, to avoid superimposing one pattern over another.

The FILL keyword replaces the use of the PATH_FILENAME keyword and
POLYFILL procedure from previous versions of IDL. Setting the FILL keyword also
closes any open contours before filling.

The following example illustrates various filled contour plot options.

; Create a simple, random dataset for contouring:
data = RANDOMU(seed, 7, 7)
; Create a basic, solid-color, filled CONTOUR plot
; with 6 evenly-spaced levels.
CONTOUR, data, NLEVELS=6, /FILL
; Overplot contour outlines:
CONTOUR, data, NLEVELS=6, /NOERASE

Instead of solid colors, contours can be filled with lines:

; Create a vector of orientations for the fill lines:
ANGLES = [0, 45, -45]
; Create a vector of colors to use:
C = [70, 120, 200, 255]
; Create contours filled with lines.
CONTOUR, data, NLEVELS=10, C_ORIENT=ANGLES, C_COLORS=C
; Overplot contour outlines:
Additional Contour Options Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 319
CONTOUR, data, NLEVELS=10, /NOERASE

There are many other controls for filled contour plots. The C_COLORS,
C_LINESTYLE, C_SPACING, and C_THICK keywords can also be used to control
the type of fill. For more information see CONTOUR in the IDL Reference Guide.

Indicating Direction of Grade

Setting the DOWNHILL keyword creates short, perpendicular tick marks along each
contour that point in the downhill (decreasing elevation) direction. These marks make
the direction of the grade readily apparent. For example:

CONTOUR, data, /DOWNHILL
Using IDL Additional Contour Options

320 Chapter 12: Plotting Multi-Dimensional Arrays
The SURFACE Procedure

The SURFACE procedure draws wire mesh representations of functions of x and y,
just as CONTOUR draws their contours. Parameters to SURFACE are similar to
CONTOUR. SURFACE accepts a two-dimensional array of z (elevation) values, and
optionally x and y parameters indicating the location of each z element.

Note
The grid defined by the x and y parameters must be regular, or nearly regular, or
errors in hidden line removal will result. Also, the rotation must project the data z-
axis so that it is parallel to the drawing surface’s y-axis or errors in hidden line
removal will result.

SURFACE projects the three-dimensional array of points into two dimensions after
rotating about the z- and then the x-axes. Each point is connected to its neighbors by
lines. Hidden lines are suppressed. The rotation about the x- and z-axes can be
specified with keywords or a complete three-dimensional transformation matrix can
be stored in the field !P.T for use by SURFACE. Details concerning the mechanics of
three-dimensional projection and rotation are covered in the next section.

The following IDL code illustrates the most basic call to SURFACE. It produces a
two-dimensional Gaussian function, then calls SURFACE to produce the figure
below.

Figure 12-7: Simple SURFACE Plot of a Gaussian
The SURFACE Procedure Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 321
; Create a 40 by 40 array in which each element is
; equal to the Euclidean distance from the center:
Z = SHIFT(DIST(40), 20, 20)
; Make Gaussian with a 1/e width of 10:
Z = EXP(-(Z/10)^2)
; Call SURFACE to display plot:
SURFACE, Z

In the example above, the DIST function creates an (n, n) array in which each
element is set to its Euclidean distance from the origin.

SURFACE Keyword Parameters

In addition to the standard graphics keyword parameters, SURFACE accepts a
number of unique keyword parameters. See SURFACE in the IDL Reference Guide
for details.

Example

The figures below illustrate the application of the SURFACE procedure to the
Maroon Bells data used in the first section of this chapter. As with CONTOUR, it is
often useful to reduce the number of individual data values, so that the surface is not
obscured by excessive detail.

The left illustration in the figure above was produced by the following statements:

; Restore variables.
@cntour01
; Resize the original data into a 72 x 92 array, setting
; all data values which are less than 2650 (the lowest
; elevation we wish to show) to 2650.
surf = REBIN(elev > 2650, 360/5, 460/5)

Figure 12-8: Maroon Bells Surface Plots
Using IDL The SURFACE Procedure

322 Chapter 12: Plotting Multi-Dimensional Arrays
; Display the surface, drawing a skirt down to 2650 meters:
SURFACE, surf, X, Y, SKIRT = 2650

Alternatively, run the batch file surf01 with the following command at the IDL
prompt:

@surf01

See “Running the Example Code” on page 304 if IDL does not find the batch file.

The right illustration in the figure shows the Maroon Peaks area looking from the
back row to the front row (north to the south) of the Maroon Peaks area. This
perspective on the data is created by setting the angle of rotation around the z-axis to
210 degrees (setting AZ = 210), and increasing the azimuth from the default 30
degrees to 45 (setting AX = 45). Also, only the horizontal lines are drawn because the
/HORIZONTAL keyword is present in the following call:

SURFACE, surf, X, Y, SKIRT = 2650, /HORIZ, AZ = 210, AX = 45

Because the axes are rotated 210 degrees about the original z-axis, the annotation is
reversed and the x-axis is behind and obscured by the surface. This undesirable effect
can be eliminated by reversing the minimum and maximum values of the X and Y
ranges used when drawing the surface:

; As above, but reverse the data rather than the axes:
SURFACE, surf, X, Y, SKIRT = 2650, /HORIZONTAL, AX = 45, $

YRANGE = [MAX(Y), MIN(Y)], XRANGE=[MAX(X), MIN(X)]
The SURFACE Procedure Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 323
Three-Dimensional Graphics

Points in xyz space are expressed by vectors of homogeneous coordinates. These
vectors are translated, rotated, scaled, and projected onto the two-dimensional
drawing surface by multiplying them by transformation matrices. The geometrical
transformations used by IDL, and many other graphics packages, are taken from
Chapters 7 and 8 of Foley and Van Dam (1982). The reader is urged to consult this
book for a detailed description of homogeneous coordinates and transformation
matrices since this section presents only an overview.

Homogeneous Coordinates

A point in homogeneous coordinates is represented as a four-element column vector
of three coordinates and a scale factor w ≠ 0. For example:

P(wx, wy, wz, w) ≡ P(x/w, y/w, z/w, 1) ≡ (x, y, z)

One advantage of this approach is that translation, which normally must be expressed
as an addition, can be represented as a matrix multiplication. Another advantage is
that homogeneous coordinate representations simplify perspective transformations.
The notion of rows and columns used by IDL is opposite that of Foley and Van Dam
(1982). In IDL, the column subscript is first, while in Foley and Van Dam (1982) the
row subscript is first. This changes all row vectors to column vectors and transposes
matrices.

Right-Handed Coordinate System

The coordinate system is right-handed so that when looking from a positive axis to
the origin, a positive rotation is counterclockwise. As usual, the x-axis runs across the
display, the y-axis is vertical, and the positive z-axis extends out from the display to
the viewer. For example, a 90-degree positive rotation about the z-axis transforms the
x-axis to the y-axis.

Transformation Matrices

Note
For most applications, it is not necessary to create, manipulate, or to even
understand transformation matrices. The procedure T3D, explained below,
implements most of the common transformations.
Using IDL Three-Dimensional Graphics

324 Chapter 12: Plotting Multi-Dimensional Arrays
Transformation matrices, which post-multiply a point vector to produce a new point
vector, must be (4, 4). A series of transformation matrices can be concatenated into a
single matrix by multiplication. If A1, A2, and A3 are transformation matrices to be
applied in order, and the matrix A is the product of the three matrices, the following
applies.

((P • A1) • A2) • A3 ≡ P • ((A1 • A2) • A3) = P • A

IDL stores the concatenated transformation matrix in the system variable field !P.T.

Each of the operations of translation, scaling, rotation, and shearing can be
represented by a transformation matrix.

Translation

The transformation matrix to translate a point by (Dx, Dy, Dz) is shown below.

Scaling

Scaling by factors of Sx, Sy, and Sz about the x-, y-, and z-axes respectively, is
represented by the matrix below.

1 0 0 Dx

0 1 0 Dy

0 0 1 Dz

0 0 0 1

Sx 0 0 0

0 Sy 0 0

0 0 Sz 0

0 0 0 1
Three-Dimensional Graphics Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 325
Rotation

Rotation about the x-, y-, and z-axes is represented respectively by the following three
matrices:

T3D Procedure

The IDL procedure T3D creates and accumulates transformation matrices, storing
them in the system variable field !P.T. The procedure can be used to create a
transformation matrix composed of any combination of translation, scaling, rotation,
perspective projection, oblique projection, and axis exchange. Transformations are
applied in the order of the keyword descriptions below:

Rx

1 0 0 0

0 θxcos θxsin– 0

0 θxsin θxcos 0

0 0 0 1

=

Ry

θycos 0 θysin 0

0 1 0 0

θysin– 0 θycos 0

0 0 0 1

=

Rz

θzcos θzsin– 0 0

θzsin θzcos 0 0

0 0 1 0

0 0 0 1

=

Using IDL Three-Dimensional Graphics

326 Chapter 12: Plotting Multi-Dimensional Arrays
RESET

Set this keyword to reset the transformation matrix to the identity matrix to begin a
new accumulation of transformations. If this keyword is not present, the current
transformation matrix !P.T is post-multiplied by the new transformation. The final
transformation matrix is always stored back in !P.T.

TRANSLATE

This keyword argument accepts a 3-element vector. The viewpoint is translated by
the three-element vector [Tx, Ty, Tz].

SCALE

This keyword argument accepts a 3-element vector. The viewing area is scaled by
factor [Sx, Sy, Sz].

ROTATE

This keyword accepts a 3-element vector. The viewing area is rotated about each axis
by the amount [θx, θy, θz], in degrees.

PERSPECTIVE

A scalar (p) indicating the z distance of the center of the projection in the negative
direction. Objects are projected into the xy plane, at z = 0, and the eye is at point
(0, 0, –p).

OBLIQUE

A two-element vector, [d, α], specifying the parameters for an oblique projection.
Points are projected onto the xy-plane at z = 0 as follows:

x0 = x + z(d cos α)

y0 = y + z(d sin α)

An oblique projection is a parallel projection in which the normal to the projection
plane is the z-axis, and the unit vector (0, 0, 1) is projected to (d cos α, d sin α) where
α is expressed in degrees.

XYEXCH

If set, exchanges the x- and y-axes.

XZEXCH

If set, exchanges the x- and z-axes.
Three-Dimensional Graphics Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 327
YZEXCH

If set, exchanges the y- and z-axes.

Example: The Transformation Created by SURFACE

The SURFACE procedure creates a transformation matrix from its keyword
parameters AX and AZ as follows:

1. Starting with the identity transformation, SURFACE translates the center of
the normalized cube to the origin.

2. SURFACE rotates 90 degrees about the x-axis to make the + z-axis of the data
the +y axis of the display. The +y data axis extends from the front of the
display to the rear.

3. SURFACE rotates AZ degrees about the y-axis. This rotates the result counter-
clockwise, as seen from above the page.

4. SURFACE rotates AX degrees about the x-axis, tilting the data towards the
viewer.

5. The procedure then removes the translation applied in the first step and scales
the data so that the data are still contained within the normal coordinate unit
cube after transformation.

These transformations can be created using T3D as shown below. The SCALE3
procedure, documented in the IDL Reference Guide, mimics the transformation
matrix created by SURFACE using the following method:

; Translate to move center of cube to origin.
T3D, /RESET, TRANSLATE = [-.5, -.5, -.5]
; Rotate 90 degrees about x-axis, so +z axis is now +y.
; Then rotate AZ degrees about y-axis.
T3D, ROTATE = [-90, AZ, 0]
; Rotate AX about x axis:
T3D, ROTATE = [AX, 0, 0]
; Restore origin.
T3D, TRANSLATE = [0.5, 0.5, 0.5]

The SCALE3 procedure, scales the unit cube by a fixed factor, 1/SQRT(3) to ensure
that the corners of the rotated cube fit within the drawing area. If requested, it also
will set the data scaling. Animations involving rotations or the SURFACE procedure
should have their scaling and viewing transformation set by SCALE3 rather than the
obsolete SURFR procedure, so that the scaling does not vary between frames.
Using IDL Three-Dimensional Graphics

328 Chapter 12: Plotting Multi-Dimensional Arrays
Three-Dimensional Coordinate Conversion

To convert from a three-dimensional coordinate to a two-dimensional coordinate,
IDL follows these steps:

• Data coordinates are converted to three-dimensional normalized coordinates.
To convert the x coordinate from data to normalized coordinates, use the
formula Nx = X0 + X1Dx. The same process is used to convert the y and z
coordinates using !Y.S and !Z.S.

• The three-dimensional normalized coordinate, P = (Nx, Ny, Nz), whose
homogeneous representation is (Nx, Ny, Nz, 1), is multiplied by the
concatenated transformation matrix !P.T:

P′ = P • !P.T

• The vector P¢ is scaled by dividing by w, and the normalized two-dimensional
coordinates are extracted:

N′x = P′x/P′w and N′y = P′y/P′w
• The normalized xy coordinate is converted to device coordinates as described

in “Two-Dimensional Coordinate Conversion” in Chapter 11.

The CONVERT_COORD function performs the above process when converting to
and from coordinate systems when the T3D keyword is specified. For example, if a
three-dimensional coordinate system is established, then the device coordinates of the
data point (0, 1, 2) can be computed as follows:

D = CONVERT_COORD(0, 1, 2, /TO_DEVICE, /T3D, /DATA)

On completion, the three-element vector D will contain the desired device
coordinates. The process of converting from three-dimensional to two-dimensional
coordinates also can be written as an IDL function. This function accepts a three-
dimensional data coordinate, returns a two-element vector containing the coordinate
transformed to two-dimensional normalized coordinates using the current
transformation matrix:

FUNCTION CVT_TO_2D, X, Y, Z
; Make a homogeneous vector of normalized 3D coordinates:
P = [!X.S[0] + !X.S[1] * X, !Y.S[0] + !Y.S[1] * Y, $

!Z.S[0] + !Z.S[1] * Z, 1]
; Transform by !P.T:
P = P # !P.T
; Return the scaled result as a two-element,
; two-dimensional, xy vector:
RETURN, [P[0] / P[3], P[1] / P[3]]

END
Three-Dimensional Graphics Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 329
Establishing a Three-Dimensional Coordinate System

Usually, scaling parameters for coordinate conversion are set up by the higher-level
procedures. To set up your own three-dimensional coordinate system with a given
transformation matrix and x, y, z data range, follow these steps:

• Establish the scaling from your data coordinates to normalized coordinates—
the (0, 1) cube. Assuming your data are contained in the range (Xmin, Ymin,
Zmin) to (Xmax, Ymax, Zmax), set the data scaling system variables as follows:

!X.S = [-Xmin, 1] / (Xmax - Xmin)
!Y.S = [-Ymin, 1] / (Ymax - Ymin)
!Z.S = [-Zmin, 1] / (Zmax - Zmin)

• Establish the transformation matrix that determines the view of the unit cube.
This can be done by either calling T3D, as explained above or by directly
manipulating !P.T yourself. If you wish to simply mimic the rotations provided
by the SURFACE procedure, call the SCALE3 procedure (which can also be
used to perform the previous step).

Example

This example draws four views of a simple house. The procedure HOUSE defines the
coordinates of the front and back faces of the house. The data-to-normal coordinate
scaling is set, as shown above, to a volume about 25 percent larger than that
enclosing the house. The PLOTS procedure is called to draw lines describing and
connecting the front and back faces. XYOUTS is called to label the front and back
faces.

The commands shown after the definition of the HOUSE procedure contain four
sequences of calls to T3D to establish the coordinate transformation, each followed
by a call to HOUSE. If you prefer not to enter the IDL code by hand, run the batch
file showhaus with the following command at the IDL prompt:

@showhaus

See “Running the Example Code” on page 304 if IDL does not find the batch file.

PRO HOUSE
; X coordinates of 10 vertices. First 5 are front face,
; second 5 are back face. The range is 0 to 16.
house_x = [0, 16, 16, 8, 0, 0, 16, 16, 8, 0]
; The corresponding y values range from 0 to 16.
house_y = [0, 0, 10, 16, 10, 0, 0, 10, 16, 10]
;The z values range from 30 to 54.
house_z = [54, 54, 54, 54, 54, 30, 30, 30, 30, 30]
; Define max and min xy values to scale.
Using IDL Three-Dimensional Graphics

330 Chapter 12: Plotting Multi-Dimensional Arrays
; Slightly larger than data range.
min_x = -4 & max_x = 20.
; Set x data scale to range from -4 to 20.
!X.S = [-(-4), 1.]/(20 - (-4))
; Same for y.
!Y.S = !X.S
; The z range is from 10 to 70.
!Z.S = [-10, 1.]/(70 - 10)
; Indices of front face.
face = [INDGEN(5), 0]
; Draw front face.
PLOTS, house_x[face], house_y[face], $

house_z[face], /T3D, /DATA
; Draw back face.
PLOTS, house_x[face + 5], house_y[face + 5], $

house_z[face + 5], /T3D, /DATA
; Connecting lines from front to back.
FOR I = 0, 4 DO PLOTS, [house_x[i], house_x[i + 5]], $

[house_y[i], house_y[i + 5]], $
[house_z[i], house_z[i + 5]], /T3D, /DATA

; Annotate front peak.
XYOUTS, house_x[3], house_y[3], Z = house_z[3], 'Front', $

/T3D, /DATA, SIZE = 2
; Annotate back.
XYOUTS, house_x[8], house_y[8], Z = house_z[8], 'Back', $

/T3D, /DATA, SIZE = 2
END

The HOUSE procedure could be called from the IDL command line to produce a
number of different plots. For example:

; Set up no rotation, scale, and draw house.
T3D, /RESET & HOUSE
; Create a handy constant.
H = [0.5, 0.5, 0.5]
; Straight projection after rotating 30 degrees about x and y axes.
T3D, /RESET, TRANS = -H, ROT = [30, 30, 0] & $

T3D, TR = H & HOUSE
; No rotation, oblique projection, z factor = 0.5, angle = 45.
T3D, /RESET, TRANS = -H, ROT=[0, 0, 0], OBLIQUE=[.5, -45] & $

T3D, TR = H & HOUSE
; Rotate 6 degrees about x and y, then apply perspective.
T3D, /RESET, TR=-H, ROT=[-6, 6, 0], PERS=4 & $

T3D, TR=H & HOUSE
Three-Dimensional Graphics Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 331
The figure illustrates the different transformations. The four rotations are:

• Upper left: no rotation, plain projection

• Upper right: oblique projection, factor = 0.5, angle = –45

• Bottom left: rotation of 30 degrees about both the x-and y-axes, plain
projection

• Bottom right: rotation of –6 degrees about the x-axis and +6 degrees about the
y-axis, and perspective projection with the eye at 4.

Rotating the House

A common procedure for visualizing three-dimensional data is to animate the data by
rotating it about one or more axes. To make an animation of the house in the
preceding example with the XINTERANIMATE procedure, use the following
example.

; Initialize animation: set frame size and number of frames.
sizx = 300
sizy = 300
nframes = 16

Figure 12-9: Illustration of Different Three-Dimensional Transformations
Using IDL Three-Dimensional Graphics

332 Chapter 12: Plotting Multi-Dimensional Arrays
XINTERANIMATE, SET=[sizx, sizy, nframes]
; Rotate about the z axis. Draw the house.Save the window.
FOR i = 0, nframes - 1 DO BEGIN $

SCALE3, AX = 75, AZ = i * 360. / nframes & $
ERASE & $
HOUSE & $
SCALE3, AX = 75, AZ = i * 360. / nframes & $
XINTERANIMATE, FRAME=i, WINDOW=!D.WINDOW & $

ENDFOR
; Show the animation.
XINTERANIMATE

In the above example, SCALE3 rather than SCALE3D is used to maintain the same
scaling in all rotations. If you prefer not to enter the IDL code by hand, run the batch
file animhaus with the following command at the IDL prompt:

@animhaus

See “Running the Example Code” on page 304 if IDL does not find the batch file.
Three-Dimensional Graphics Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 333
Three-Dimensional Transformations

The CONTOUR and PLOT procedures output their results using the three-
dimensional coordinate transformation contained in !P.T when the keyword T3D is
specified. Note that !P.T must contain a valid transformation matrix prior to using the
T3D keyword.

PLOT and its variants output graphs in the xy-plane at the normal coordinate z value
given by the keyword ZVALUE. If this keyword is not specified, the plot is drawn at
the bottom of the unit cube at z = 0.

CONTOUR draws its axes at z = 0 and its contours at their z data value if ZVALUE is
not specified. If ZVALUE is present, CONTOUR draws both the axes and contours
in the xy-plane at the given z value.

Combining CONTOUR and SURFACE

It is easy to combine the results of SURFACE with the other IDL graphics
procedures. The keyword parameter SAVE causes SURFACE to save the graphic
transformation it used in !P.T. Then, when either CONTOUR or PLOT is called with
the keyword parameter T3D, its output is transformed with the same projection. For
example, the figure below illustrates how SURFACE and CONTOUR can be
combined. In essence, this is a combination of figures from 2 previous sections.

Figure 12-10: Combining CONTOUR with SURFACE, Maroon Bells Data
Using IDL Three-Dimensional Transformations

334 Chapter 12: Plotting Multi-Dimensional Arrays
Using the same variables as in the earlier sections of this chapter, the figure was
produced with the following statements:

; Restore variables.
@cntour01
; Resize the original data into a 72 x 92 array,
; setting all data values which are less than
; 2650 (the lowest elevation we wish to show) to 2650.
surf = REBIN(elev > 2650, 360/5, 460/5)
; Make the mesh.
SURFACE, surf, X, Y, SKIRT=2650, /SAVE
; Specify T3D to align with SURFACE, at ZVALUE of 1.0.
; Suppress clipping as the plot is outside the normal plot window.
CONTOUR, surf, X, Y, /T3D, /NOERASE, TITLE = 'Contour Plot', $

MAX_VAL = 5000., ZVALUE = 1.0, /NOCLIP, $
LEVELS = 2750. + FINDGEN(6) * 250

More Complicated Transformations

The figure below illustrates the application of three-dimensional transforms to the
output of CONTOUR and PLOT. Using the two-dimensional Gaussian array z
defined in “The SURFACE Procedure” on page 320, it draws a three-dimensional
contour plot with the contours stacked above the axes in the z direction. It then plots
the sum of the columns, also a Gaussian, in the xz-plane, and the sum of the rows in
the yz plane.

It was constructed as follows:

Figure 12-11: PLOT and CONTOUR with a Three-dimensional Transform
Three-Dimensional Transformations Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 335
• First, the SCALE3 procedure is called to establish the default three- to two-
dimensional transformation used by SURFACE, as explained above. The
default rotations are 30 degrees about both the x- and z-axes.

• Next, a vector, POS, defining the cube containing the plot window is defined
in normalized coordinates. The cube extends from 0.1 to 1.0 in the x and y
directions and from 0 to 1 in the z direction. Each call to CONTOUR and
PLOT must explicitly specify this window to align the plots. This is necessary
because the default margins around the plot window are different in each
direction.

• CONTOUR is called to draw the stacked contours with the axes at z = 0.
Clipping is disabled to allow drawing outside the default plot window, which
is only two-dimensional.

• The procedure T3D is called to exchange the y- and z-axes. The original xyz
coordinate system is now xzy.

• PLOT is called to draw the column sums which appear in front of the contour
plot. The expression Z#REPLICATE(1., Ny) creates a row vector containing
the sum of each row in the two-dimensional array z. The NOERASE and
NOCLIP keywords are specified to prevent erasure and clipping. This plot
appears in the xz-plane because of the previous axis exchange.

• T3D is called again to exchange the x- and z-axes. This makes the original xyz
coordinate system, which was converted to xzy, now correspond to yzx.

• PLOT is called to produce the column sums in the yz-plane in the same manner
as the first plot. The original x-axis is drawn in the y-plane, and the y-axis is in
the z-plane. One unavoidable side effect of this method is that the annotation of
this plot is backwards. If the plot is transformed so the letters read correctly,
the x-axis of the plot would be reversed in relation to the y-axis of the contour
plot.

The IDL code used to draw the figure is as follows:

; Create the Z variable:
Z = SHIFT(DIST(40), 20, 20)
Z = EXP(-(Z/10)^2)
; NX and NY are the X and Y dimensions of the Z array:
NX = (SIZE(Z))(1)
NY = (SIZE(Z))(2)
; Set up !P.T with default SURFACE transformation.
SCALE3
; Define the three-dimensional plot
; window: x = 0.1 to 1, Y=0.1 to 1, and z = 0 to 1.
POS=[.1, .1, 1, 1, 0, 1]
Using IDL Three-Dimensional Transformations

336 Chapter 12: Plotting Multi-Dimensional Arrays
; Make the stacked contours. Use 10 contour levels.
CONTOUR, Z, /T3D, NLEVELS=10, /NOCLIP, POSIT=POS, CHARSIZE=2
; Swap y and z axes. The original xyz system is now xzy:
T3D, /YZEXCH
; Plot the column sums in front of the contour plot:
PLOT, Z#REPLICATE(1., NY), /NOERASE, /NOCLIP, /T3D, $

TITLE='COLUMN SUMS', POSITION = POS, CHARSIZE = 2
; Swap x and z—original xyz is now yzx:
T3D, /XZEXCH
; Plot the row sums along the right side of the contour plot:
PLOT, REPLICATE(1., NX)#Z, /NOERASE, /T3D, /NOCLIP, $

TITLE = 'ROW SUMS', POSITION = POS, CHARSIZE = 2

If you prefer not to enter the IDL code by hand, run the batch file cntour06 with the
following command at the IDL prompt:

@cntour06

See “Running the Example Code” on page 304 if IDL does not find the batch file.
Three-Dimensional Transformations Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 337
Combining Images with Three-Dimensional Graphics

Images are combined with three-dimensional graphics, as shown in the figure below,
using the transformation techniques described above.

The rectangular image must be transformed so that it fits underneath the mesh drawn
by SURFACE. The general approach is as follows:

• Use SURFACE to establish the general scaling and geometrical
transformation. Draw no data, as the graphics made by SURFACE will be
over-written by the transformed image.

• For each of the four corners of the image, translate the data coordinate, which
is simply the subscript of the corner, into a device coordinate. The data
coordinates of the four corners of an (m, n) image are (0, 0), (m–1, 0), (0, n–1),
and (m–1, n–1). Call this data coordinate system (x, y). Using a procedure or
function similar to CVT_TO_2D (see “Three-Dimensional Coordinate
Conversion” on page 328) convert to device coordinates, which in this
discussion are called (U, V).

Figure 12-12: Using SHOW3 to Overlay an Image, Surface Mesh, and Contour
Using IDL Three-Dimensional Transformations

338 Chapter 12: Plotting Multi-Dimensional Arrays
• The image is transformed from the original xy coordinates to a new image in
UV coordinates using the POLY_2D function. POLY_2D accepts an input
image and the coefficients of a polynomial in UV giving the xy coordinates in
the original image. The equations for x and y are below.

X = S0,0 + S1,0U +S1,0V +S1,1UV

Y = T0,0 + T1,0U + T1,0V + T1,1UV

We solve for the four unknown S coefficients using the four equations relating
the x corner coordinates to their U coordinates. The T coefficients are similarly
found using the y and V coordinates. This can be done using matrix operators
and inversion or more simply, with the procedure POLY_WARP.

• The new image is a rectangle that encloses the quadrilateral described by the
UV coordinates. Its size is specified in the formula below:

(MAX(U) – MIN(U) +2, MAX(V) – MIN(V) +1)

• POLY_2D is called to form the new image which is displayed at device
coordinate (MIN(U), MIN(V)).

• SURFACE is called once again to display the mesh surface over the image.

• Finally, CONTOUR is called with ZVALUE set to 1.0, placing the contour
above both the image and the surface.

The SHOW3 procedure performs these operations. It should be examined for details
of how images and graphics can be combined.

The following IDL commands were used to create the previous image:

; Restore variables:
@cntour01
; Reduce the size of elev array:
new = REBIN(elev, 360/5, 460/5)
; Create an array of levels for CONTOUR:
levs = (FINDGEN(10)*100)+3500
; Use SHOW3. Note the use of keywords E_SURFACE
; and E_CONTOUR to pass values to the SURFACE and
; CONTOUR routines used within SHOW3.
SHOW3, new, E_SURFACE={min:2000}, E_CONTOUR={levels:levs}
Three-Dimensional Transformations Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 339
Shaded Surfaces

The SHADE_SURF procedure creates a shaded representation of a surface made
from regularly gridded elevation data. The shading information can be supplied as a
parameter or computed using a light-source model. Displays are easily constructed
depicting the surface elevation of a variable shaded as a function of itself or another
variable. This procedure is similar to the SURFACE routine, but it renders the visible
surface as a shaded image rather than a mesh.

Parameters are identical to those of the SURFACE procedure. See SHADE_SURF in
the IDL Reference Guide for details.

Shading Method

The shading applied to each polygon, defined by its four surrounding elevations, can
be either constant over the entire cell or interpolated. Constant shading takes less time
because only one shading value needs to be computed for the entire polygon.
Interpolated shading gives smoother results. The Gouraud method of interpolation is
used: the shade values are computed at each elevation point, coinciding with each
polygon vertex. The shading is then interpolated along each edge, finally, between
edges along each vertical scan line.

Light-source shading is computed using a combination of depth cueing, ambient
light, and diffuse reflection, adapted from Foley and Van Dam (1982, Chapter 19):

I = Ia + dIp(L • N)

where

Ia Term due to ambient light. All visible objects have at least this
intensity, which is approximately 20 percent of the maximum
intensity.

Ip(L • N) Term due to diffuse reflection. The reflected light is
proportional to the cosine of the angle between the surface
normal vector N and the vector pointing to the light source, L.
Ip is approximately 0.9.

d Term for depth cueing, causing surfaces further away from the
observer to appear dimmer. The normalized depth is
d=(z+2)/3, ranging from zero for the most distant point to one
for the closest.
Using IDL Shaded Surfaces

340 Chapter 12: Plotting Multi-Dimensional Arrays
Shading Parameters

Parameters affecting the method of shading interpolation, light source direction, and
rejection of hidden faces are set with the SET_SHADING procedure. Defaults are
Gouraud interpolation, light-source direction [0, 0, 1], and rejection of hidden faces
enabled. See the description of SET_SHADING in the IDL Reference Guide for a
more complete description of the parameters.

Note
The REJECT keyword has no effect on the output of SHADE_SURF—it is used
only with solids.

Examples Using SHADE_SURF

The following figure illustrates the application of SHADE_SURF, with light-source
shading, to the two-dimensional Gaussian (also drawn as a mesh in Figure 12-7).
This figure was produced by the following statements.

; Create a 40-by-40 array in which each element
; is equal to the Euclidean distance from the center.
Z = SHIFT(DIST(40), 20, 20)
; Make Gaussian with a 1/e width of 10:
Z = EXP(-(Z/10)^2)
SHADE_SURF, Z

The right half of the following figure shows the use of an array of shades, which in
this case is simply the surface elevation scaled into the range of bytes.

Figure 12-13: Shaded Representations of a Two-Dimensional Gaussian
Shaded Surfaces Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 341
The output of SURFACE is superimposed over the shaded image with the statements
below.

; Show Gaussian with shades created by scaling
; elevation into the range of bytes.
SHADE_SURF, Z, SHADES=BYTSCL(Z, TOP = !D.TABLE_SIZE)
; Draw the mesh surface over the shaded figure.
; Suppress the axes:
SURFACE, Z, XST = 4, YST = 4, ZST = 4, /NOERASE

The next figure shows the Maroon Bells data as a light-source shaded surface (this
data is also shown in the right half of Figure 12-8). It was produced by the following
statements:

; Restore variables.
@cntour01
SHADE_SURF, elev, AZ=210, AX=45, XST=4, YST=4, ZST=4

The AX and AZ keywords specify the orientation. The axes are suppressed by the
axis-style keyword parameters; as in this orientation, the axes are behind the surface.

Figure 12-14: Maroon Bells Data Shown as a Shaded Surface
Using IDL Shaded Surfaces

342 Chapter 12: Plotting Multi-Dimensional Arrays
Volume Visualization

A common problem in data visualization is how to display a constant density surface
(also known as an isosurface), given a three-dimensional grid of density
measurements. In medical imaging, stacking a series of two-dimensional images
created by computed tomography or magnetic resonance creates a grid of density
measurements that can be contoured to display the surfaces of anatomical structures.
Atmospheric scientists create three-dimensional grids of water densities that can be
contoured at the proper density level to show the surface of clouds. It is relatively
easy to produce these surfaces using the SHADE_VOLUME procedure in
conjunction with the POLYSHADE function.

SHADE_VOLUME accepts a three-dimensional grid of densities and a contour level.
It outputs the set of polygons that describe the surface of the contour. The polygons
are described by a (3, n) array of vertices and a polygon list array that contains the
vertices belonging to each polygon. Given a volume array with dimensions of (D0,
D1, D2), the resulting vertex coordinates range between 0 and D0 – 1 in x, 0 and D1 –
1 in y, and 0 and D2 – 1 in z. Keyword parameters to SHADE_VOLUME include the

following:

LOW

A flag indicating which side of the contour surface is to be viewed: 1 for the high side
and 0 for the low (the default). If the contour to be viewed encloses high data values,
as in the “Cloud Example” data, set the LOW keyword parameter to 1.

SHADES

An array of shading values for each volume element (voxel). On completion,
SHADE_VOLUME replaces this array with the interpolated shading for each vertex
of the surface.

These polygons are then fed to the POLYSHADE function to produce the shaded
surface representation. It must be noted that the maximum volume size and polygon
complexity are limited by the amount of available memory, as these routines store the
density measurements, vertex list, and polygon list in memory.
Volume Visualization Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 343
Cloud Example

This next figure, produced by the following IDL code, shows the three-dimensional
contour surface of the precipitating region of a thunderstorm simulated by a three-
dimensional cloud model.

The data were provided by the National Center for Atmospheric Research. The
original data are contained in an array called clouds, a (55, 55, 32) element floating-
point array. Each array element contains the amount of water contained in the
corresponding volume of air.

; Restore the data:
RESTORE, FILEPATH('clouds3d.dat', SUBDIR=['examples','data'])
; Create the contour surface polygons (v and p)
; at density 0.1, from clouds. Show the low side:
SHADE_VOLUME, clouds, 0.1, v, p, /LOW
; Obtain the dimensions of the volume.
; Variables S[1], S[2], and S[3] now contain

Figure 12-15: A 3-dimensional Contour Surface of a Cloud’s Precipitating
Region
Using IDL Volume Visualization

344 Chapter 12: Plotting Multi-Dimensional Arrays
; the number of columns, rows, and slices in the volume:
s = SIZE(clouds)
; Use SCALE3 to establish the three-dimensional
; transformation matrix. Rotate 45 degrees about the z-axis:
SCALE3, XRANGE=[0,S[1]], YRANGE=[0,S[2]], $

ZRANGE=[0,S[3]], AX=0, AZ=45
; Render and display the polygons:
TV, POLYSHADE(v, p, /T3D)

If you prefer not to enter the IDL code by hand, run the batch file clouds with the
following command at the IDL prompt:

@clouds

See “Running the Example Code” on page 304 if IDL does not find the batch file.

The shaded volume can be viewed from different rotations by changing the three-
dimensional transformation matrix, !P.T, and calling POLYSHADE for each view.
The following code displays 20 views of the volume, each separated by 18 degrees.

; Define number of views:
nframes = 20
FOR i = 0, nframes - 1 DO BEGIN & $

; Translate the center of the (0, 1) unit cube
; to (0,0) and rotate about the x-axis:
T3D, TR=[-.5, -.5, -.5], ROT=[0, 360./NFRAMES, 0] & $
; Translate the center back to (0.5, 0.5, 0.5):
T3D, TR = [.5, .5, .5] & $
; Show the surface:
TV, POLYSHADE(v, p, /T3D) & $

ENDFOR

The animation rate of the above loop will not be very fast, especially with a larger
number of polygons. Each image could be saved for rapid replay by writing it to a
disk file. Given enough memory and/or display resources, the XINTERANIMATE
procedure could be used to animate the views.

Volume Visualization Tools

IDL also includes two interactive volume visualization tools:

SLICER3

SLICER3, implemented using IDL Direct Graphics, is a tool used to view isosurfaces
and slices of volume data. See SLICER3 in the IDL Reference Guide for more
information.
Volume Visualization Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 345
XVOLUME

XVOLUME, implemented using IDL Object Graphics, is a utility for viewing and
interactively manipulating volumes and isosurfaces. The utility provides a graphical
interface for manipulating the volume orientation, adjusting the color table and
opacity, viewing image planes and contours, and adjusting the color, opacity, and
threshold value of an isosurface. See XVOLUME in the IDL Reference Guide for
more information.
Using IDL Volume Visualization

346 Chapter 12: Plotting Multi-Dimensional Arrays
References

Foley, J.D., and A. Van Dam (1982), Fundamentals of Interactive Computer
Graphics, Addison-Wesley Publishing Co.
References Using IDL

Chapter 13:

Map Projections
The following topics are covered in this chapter:
Overview . 348
The MAP_SET Procedure 349
The MAP_GRID Procedure 351
The MAP_CONTINENTS Procedure . . . 352
Graphics Techniques for Mapping 353
Map Projections Described 355

Azimuthal Projections 356
Cylindrical Projections 366
Pseudocylindrical Projections 371
Putting Data on Maps 374
High-Resolution Continent Outlines 376
References . 378
Using IDL 347

348 Chapter 13: Map Projections
Overview

The IDL mapping package contains the following procedures:

MAP_SET

This procedure establishes the coordinate conversion mechanism for mapping points
on a globe’s surface to points on a plane, according to one of 16 possible projections.
This procedure also sets up the clipping parameters of the region to be mapped, the
center of the map, and the polar rotation. MAP_SET must be called to set up a map
projection before any other mapping routines are called. See MAP_SET in the IDL
Reference Guide for more information.

MAP_GRID

This procedure draws the graticule of parallels and meridians (grid lines) according
to the specifications established by MAP_SET. See MAP_GRID in the IDL
Reference Guide for more information.

MAP_CONTINENTS

This procedure draws continental or other boundaries over a map projection
established by MAP_SET. Continents, coastlines, rivers, and political borders can be
draw in either low or high resolution. Continents may also be filled with solid colors.
See MAP_CONTINENTS in the IDL Reference Guide for more information.

MAP_IMAGE and MAP_PATCH

These functions return an image warped to fit the current map projection. See
MAP_IMAGE and MAP_PATCH in the IDL Reference Guide for more information.

Example Graphics

The examples in this chapter are all written to take advantage of IDL Direct Graphics.
Overview Using IDL

Chapter 13: Map Projections 349
The MAP_SET Procedure

The MAP_SET procedure establishes the axis type and coordinate conversion
mechanism for mapping points on the Earth’s surface, expressed in latitude and
longitude, to points on a plane, according to one of 16 possible map projections.
Many other keywords are available to control various graphics options. For
information on all the available keywords, see MAP_SET in the IDL Reference
Guide for more information.

You can select the map projection, the map center, polar rotation, and geographical
limits. The system variable !MAP1 retains the information needed to effect
coordinate conversions to the plane and inversely from the projection plane to points
on the earth in latitude and longitude. Do not change the values of the fields in
!MAP1 directly. You can plot the graticule and continental boundaries with
MAP_SET by setting the GRID and CONTINENT keywords. The procedure has the
calling sequence:

MAP_SET[, P0lat, P0lon, Rot]

where the keywords are described as follows:

P0lat

P0lat is the latitude of the point on the Earth’s surface at the center of the projection
plane. Latitude is measured in degrees North of the equator, where –90° ≤ P0lat ≤ 90°.
If P0lat is not set, the default value is zero.

P0lon

P0lon is the longitude of the point on the Earth’s surface to be mapped to the center of
the map projection. Longitude is measured in degrees east of the Greenwich meridian
and –180° ≤ P0lon ≤ 180°. If P0lon is not set, the default value is zero.

Rot

Rot is the angle through which the North direction should be rotated around the line L
between the Earth’s center and the point (P0lat, P0lon). Rot is measured in degrees
with the positive direction being clockwise rotated around L. Rot should satisfy
–180 ≤ Rot ≤ 180.

If the center is at the North Pole, the North direction is in the direction of P0lon + 180
degrees. If the origin is at the South Pole, then North is in the direction of P0lon. The
default value of Rot is zero.
Using IDL The MAP_SET Procedure

350 Chapter 13: Map Projections
MAP_SET Keywords

MAP_SET accepts many keywords that customize the projection attributes of the
map. A few of the important ones are described below. See MAP_SET in the IDL
Reference Guide for descriptions of all the keywords.

CONTINENTS

Set this keyword to plot the continental boundaries.

GRID

Set this keyword to draw the grid of parallels and meridians.

ISOTROPIC

Set this keyword to produce a map that has the same scale in the X and Y directions.

LIMIT

Set this keyword to a four- or eight-element vector. The four-element vector, [Latmin,
Lonmin, Latmax, Lonmax], specifies the boundaries of a simple region to be mapped.
(Latmin, Lonmin) and (Latmax, Lonmax) are the latitudes and longitudes of two points
diagonal from each other on the region’s boundary. For more complex regions or
projections, the eight-element vector, [Lat0, Lon0, Lat1, Lon1, Lat2, Lon2, Lat3, Lon3]
specifies four points located, respectively, on the left, top, right and bottom edges of
the map.

SCALE

Set this keyword to construct an isotropic map with the given scale, set to the ratio of
1:scale. If SCALE is not specified, the map is fit to the window. The typical scale for
global maps is in the ratio of between 1:100 million and 1:200 million. For
continents, the typical scale is in the ratio of approximately 1:50 million. For
example, SCALE=100E6 sets the scale at the center of the map to 1:100 million,
which is in the same ratio as 1 inch to 1578 miles (1 cm to 1000 km).
The MAP_SET Procedure Using IDL

Chapter 13: Map Projections 351
The MAP_GRID Procedure

MAP_GRID draws the graticule of parallels and meridians according to the
specifications established by MAP_SET. The MAP_SET procedure should be called
before MAP_GRID to establish the projection type, the center of the projection, polar
rotation, and geographical limits. Latitude and/or longitude lines can be drawn in
different line styles, colors, and spacings. See MAP_GRID in the IDL Reference
Guide for more information on all the available options.
Using IDL The MAP_GRID Procedure

352 Chapter 13: Map Projections
The MAP_CONTINENTS Procedure

MAP_CONTINENTS draws the projection of the continental boundaries, according
to the specifications established by MAP_SET. MAP_SET should be called before
MAP_CONTINENTS to establish the projection type, the center of the projection,
polar rotation, and geographical limits. See MAP_CONTINENTS in the IDL
Reference Guide for more information on all the available options.
The MAP_CONTINENTS Procedure Using IDL

Chapter 13: Map Projections 353
Graphics Techniques for Mapping

Standard graphics techniques are insufficient when projecting areas on a sphere to a
two-dimensional surface for two reasons. First, two points on a sphere are connected
by two different lines. Second, areas may wrap around the edges of cylindrical and
pseudo-cylindrical projections.

Graphical entities on the surface of a sphere can be properly represented on any map
by using a combination of the following four stages: splitting, 3D clipping,
projection, and rectangular clipping. The MAP_SET procedure automatically sets up
the proper mapping technique to best fit the projection selected by the user.

Warning
For proper rendering, splitting, and clipping, polygons must be traversed in counter-
clockwise order when observed from outside the sphere. If this requirement is not
met, the exterior, instead of the interior, of the polygons may be filled. Also, vectors
connecting the points spanning the singular line for cylindrical projections will be
drawn in the wrong direction if polygons are not traversed in the correct order.

Splitting

The splitting stage is used for cylindrical and pseudo-cylindrical projections. The
singular line, one half of a great circle line, is located opposite the center of the
projection; points on this line appear on both edges of the map. The singular line is
the intersection of the surface of the sphere with a plane passing through the center of
projection, one of the poles of projections, and the center of the sphere.

3D Clipping

Map graphics are clipped to one side of an arbitrary clipping plane in one or more
clipping stages. For example, to draw a hemisphere centered on a given point, the
clipping plane passes through the center of the sphere and has a normal vector that
coincides with the given point.

Projection

In the projection stage, a point expressed in latitude and longitude is transformed to a
point on the mapping plane.
Using IDL Graphics Techniques for Mapping

354 Chapter 13: Map Projections
Rectangular Clipping

After the map graphics have been projected onto the mapping plane, a conventional
rectangular clipping stage ensures that the graphics are properly bounded and closed
in the rectangular display area.
Graphics Techniques for Mapping Using IDL

Chapter 13: Map Projections 355
Map Projections Described

In the following sections, the available projections are discussed in detail. The
projections are grouped within three categories: azimuthal, cylindrical, and pseudo-
cylindrical.

Note
In this text, the plane of the projection is referred to as the UV plane with horizontal
axis u and vertical axis v.
Using IDL Map Projections Described

356 Chapter 13: Map Projections
Azimuthal Projections

With azimuthal projections, the UV plane is tangent to the globe. The point of
tangency is projected onto the center of the plane and its latitude and longitude are
P0lat and P0lon, respectively. Rot is the angle between North and the v-axis.

Important characteristics of azimuthal maps include the fact that directions or
azimuths are correct from the center of the projection to any other point, and great
circles through the center are projected to straight lines on the plane.

The IDL mapping package includes the following azimuthal projections:
orthographic, stereographic, gnomonic, azimuthal equidistant, Aitoff, Lambert’s
azimuthal equal area, Hammer-Aitoff, and satellite.

Orthographic Projection

The orthographic projection was known by the Egyptians and Greeks 2000 years ago.
This projection looks like a globe because it is a perspective projection from infinite
distance. As such, it maps one hemisphere of the globe into the UV plane. Distortions
are greatest along the rim of the hemisphere where distances and land masses are
compressed.

The following statements are used to produce an orthographic projection centered
over Eastern Spain at a scale of 70 million to 1:

MAP_SET, /ORTHOGRAPHIC, 40, 0, SCALE=70e6, /CONTINENTS, $
/GRID, LONDEL=15, LATDEL=15, $
TITLE = 'Oblique Orthographic'

The output of these statements is shown in the following figure.

Figure 13-1: Orthographic Projection
Azimuthal Projections Using IDL

Chapter 13: Map Projections 357
Stereographic Projection

The stereographic projection is a true perspective projection with the globe being
projected onto the UV plane from the point P on the globe diametrically opposite to
the point of tangency. The whole globe except P is mapped onto the UV plane. There
is great distortion for regions close to P, since P maps to infinity.

The stereographic projection is the only known perspective projection that is also
conformal. It is frequently used for polar maps. For example, a stereographic view of
the north pole has the south pole as its point of perspective.

The following statement uses the stereographic projection to draw the hemisphere
centered on the equator at longitude –105 degrees and produces an equatorial
stereographic map:

MAP_SET, /STEREO, 0, -105, /ISOTROPIC, $
/GRID, LATDEL = 20, LONDEL = 20, /HORIZON, /CONTINENT, $
TITLE = 'Equatorial Stereographic'

The output of this statement is shown in the following figure:

Figure 13-2: An Azimuthal Projection
Using IDL Azimuthal Projections

358 Chapter 13: Map Projections
Since the LATDEL and LONDEL keywords are set to 20, parallels and meridians are
spaced 20 degrees apart. The GRID and CONTINENT keywords signal that the grid
and continents should be drawn.

Gnomonic Projection

The gnomonic projection (also called Central or Gnomic) projects all great circles to
straight lines. The gnomonic projection is the perspective, azimuthal projection with
point of perspective at the center of the globe. Hence, with the gnomonic projection,
the interior of a hemispherical region of the globe is projected to the UV plane with
the rim of the hemisphere going to infinity. Except at the center, there is great
distortion of shape, area, and scale. The default clipping region for the gnomonic
projection is a circle with a radius of 60 degrees at the center of projection.

MAP_SET, /GNOMIC, 40, -105, LIMIT = [20, -130, 70, -70], $
/ISOTROPIC, /GRID, /CONTINENT, $
TITLE = 'Oblique Gnomonic'

This projection is centered around the point at latitude 40 degrees and longitude –105
degrees. The region on the globe that is mapped lies between 20 degrees and 70
degrees of latitude and –130 degrees and –70 degrees of longitude.

The output of these statements is shown in the following figure:

Figure 13-3: A Gnomonic Projection
Azimuthal Projections Using IDL

Chapter 13: Map Projections 359
Azimuthal Equidistant Projection

The azimuthal equidistant projection is also not a true perspective projection, because
it preserves correctly the distances between the tangent point and all other points on
the globe. The point P opposite the tangent point is mapped to a circle on the UV
plane, and hence, the whole globe is mapped to the plane. There is infinite distortion
close to the outer rim of the map, which is the circular image of P.

If the keyword LIMIT is not set, the whole globe is mapped to the UV plane.

MAP_SET, /AZIMUTHAL, /ISOTROPIC, -90, $
/GRID, LONDEL=20, LATDEL=20, /CONTINENT, $
/HORIZON, TITLE = 'Polar Azimuthal'

It is centered at the South Pole and shows the entire globe.

The output of these statements is shown in the following figure:

Figure 13-4: An Azimuthal Equidistant Projection
Using IDL Azimuthal Projections

360 Chapter 13: Map Projections
Aitoff Projection

The Aitoff projection modifies the equatorial aspect of one hemisphere of the
azimuthal equidistant projection, described above. Lines parallel to the equator are
stretched horizontally and meridian values are doubled, thereby displaying the world
as an ellipse with axes in a 2:1 ratio. Both the equator and the central meridian are
represented at true scale; however, distances measured between the point of tangency
and any other point on the map are no longer true to scale.

An Aitoff projection centered on the international dateline can be produced by the
command:

MAP_SET, 0, 180, /Aitoff, /GRID, /CONTINENTS, /ISOTROPIC, $
TITLE= 'Aitoff Projection'

The output of these statements is shown in the following figure:

Lambert’s Equal Area Projection

Lambert’s equal area projection adjusts projected distances in order to preserve area.
Hence, it is not a true perspective projection. Like the stereographic projection, it
maps to infinity the point P diametrically opposite the point of tangency. Note also
that to preserve area, distances between points become more contracted as the points
become closer to P. Lambert’s equal area projection has less overall scale variation
than the other azimuthal projections.

MAP_SET, /LAMBERT, 90, 0, -105, /ISOTROPIC, $

Figure 13-5: An Aitoff Projection
Azimuthal Projections Using IDL

Chapter 13: Map Projections 361
/GRID, LATDEL=20, LONDEL=20, $
/CONTINENTS, E_CONTINENTS={FILL:1}, /HORIZON, $
TITLE = 'Polar Lambert'

The output of these statements is shown in the following figure:

Note
This map shows the Northern Hemisphere rotated counterclockwise 105 degrees,
filling the continents with a solid color

Hammer-Aitoff Projection

Although the Hammer-Aitoff projection is not truly azimuthal, it is included in this
section because it is derived from the equatorial aspect of Lambert’s equal area
projection limited to a hemisphere (in the same way Aitoff’s projection is derived
from the equatorial aspect of the azimuthal equidistant projection). In this derivation,
the hemisphere is represented inside an ellipse with the rest of the world in the lunes
of the ellipse.

Figure 13-6: A Lambert’s Equal Area Projection
Using IDL Azimuthal Projections

362 Chapter 13: Map Projections
Because the Hammer-Aitoff projection produces an equal area map of the entire
globe, it is useful for visual representations of geographically related statistical data
and distributions. Astronomers use this projection to show the entire celestial sphere
on one map in a way that accurately depicts the relative distribution of the stars in
different regions of the sky.

A Hammer-Aitoff projection centered on the international dateline can be produced
by the command:

MAP_SET, 0, 180, /HAMMER, /GRID, /CONTINENTS, /ISOTROPIC, $
/HORIZON, TITLE= 'Hammer-Aitoff Projection'

The output of these statements is shown in the following figure:

Satellite Projection

The satellite projection, also called the General Perspective projection, simulates a
view of the globe as seen from a camera in space. If the camera faces the center of the
globe, the projection is called a Vertical Perspective projection (note that the
orthographic, stereographic, and gnomonic projections are special cases of this
projection), otherwise the projection is called a Tilted Perspective projection.

The globe is viewed from a point in space, with the viewing plane touching the
surface of the globe at the point directly beneath the satellite (the sub-satellite point).
If the projection plane is perpendicular to the line connecting the point of projection
and the center of the globe, a Vertical Perspective projection results. Otherwise, the

Figure 13-7: The Hammer-Aitoff Projection
Azimuthal Projections Using IDL

Chapter 13: Map Projections 363
projection plane is horizontally turned Γ degrees clockwise from the north, then tilted
ω degrees downward from horizontal.

For the satellite projection, P0Lat and P0Lon represent the latitude and longitude of the
sub-satellite point. Three additional parameters, P, Omega, and Gamma (supplied as
a three-element vector argument to the SAT_P keyword), are required where:

• P is the distance of the point of perspective (camera) from the center of the
globe, expressed in units of the radius of the globe.

• Omega is the downward tilt of the camera, in degrees from the new horizontal.
If both Gamma and Omega are 0, a Vertical Perspective projection results.

• Gamma is the angle, expressed in degrees clockwise from north, of the rotation
of the projection plane.

Note
Since all meridians and parallels are oblique lines or arcs, the LIMIT keyword must
be supplied as an eight-element vector representing four points that delineate the
limits of the map. The extent of the map limits, when expressed in
latitude/longitude is a complicated polygon, rather than a simple quadrilateral.
Using IDL Azimuthal Projections

364 Chapter 13: Map Projections
The map in the accompanying figure, which shows the eastern seaboard of the United
States from an altitude of about 160km, above Newburgh, NY, was produced with the
code that follows.

The parameters for this satellite projection are:

• Center of projection = 41.5N latitude, –74W longitude

• P (altitude) = 1.025 = (1.0 + 160 / 6371km)

• Gamma (rotation of projection plane) = 150 degrees

• Omega (tilt of projection plane) = 55 degrees

• The eight element LIMIT keyword array specifies the latitude/longitude
locations of points at the bottom, left, top, and right of the map respectively.

• The HORIZON keyword draws a horizon line.

Figure 13-8: Satellite Projection
Azimuthal Projections Using IDL

Chapter 13: Map Projections 365
Example: Labeling and Drawing Projections

Labeling and drawing a vector on a satellite projection.

MAP_SET, /SATELLITE, SAT_P=[1.0251, 55, 150], 41.5, -74., $
/ISOTROPIC, /HORIZON, $
LIMIT=[39, -74, 33, -80, 40, -77, 41,-74], $
/CONTINENTS, TITLE='Satellite / Tilted Perspective'

; Set up the satellite projection:
MAP_GRID, /LABEL, LATLAB=-75, LONLAB=39, LATDEL=1, LONDEL=1
; Get North vector:
p = convert_coord(-74.5, [40.2, 40.5], /TO_NORM)
; Draw North arrow:
ARROW, p(0,0), p(1,0), p(0,1), p(1,1), /NORMAL
XYOUTS, -74.5, 40.1, 'North', ALIGNMENT=0.5
Using IDL Azimuthal Projections

366 Chapter 13: Map Projections
Cylindrical Projections

A cylindrical projection maps the globe to a cylinder which is formed by wrapping
the UV plane around the globe with the u-axis coinciding with a great circle. The
parameters P0lat, P0lon, and Rot determine the great circle that passes through the
point C=(P0lat, P0lon). In the discussions below, this great circle is sometimes
referred to as EQ. Rot is the angle between North at the map’s center and the v-axis
(which is perpendicular to the great circle). The cylinder is cut along the line parallel
to the v-axis and passing through the point diametrically opposite to C. It is then
rolled out to form a plane.

The cylindrical projections in IDL include: Mercator, Transverse Mercator,
cylindrical equidistant, Miller, Lambert’s conformal conic, and Alber’s equal-area
conic.

Mercator Projection

Mercator’s projection is partially developed by projecting the globe onto the cylinder
from the center of the globe. This is a partial explanation of the projection because
vertical distances are subjected to additional transformations to achieve conformity—
that is, local preservation of shape. To properly use the projection, the user should be
aware that the two points on the globe 90 degrees from the central great circle (e.g.,
the North and South Poles in the case that the selected great circle is the equator) are
mapped to infinite distances. By default, the keyword LIMIT is set to [–80, –180, 80,
180] because of the great distortions around the poles when the equator is selected.

The following statement produces a simple Mercator projection:

MAP_SET, /MERCATOR, 0, 0, /ISOTROPIC, $
/GRID, /CONTINENTS, $
TITLE = 'Simple Mercator'
Cylindrical Projections Using IDL

Chapter 13: Map Projections 367
The result of this statement is shown in the upper-left corner of the following figure.

Latitudes range from –80 degrees to 80 degrees.

Transverse Mercator Projection

The Transverse Mercator (also called the UTM, and Gauss-Krueger in Europe)
projection rotates the equator of the Mercator projection 90 degrees so that it follows
a specified central meridian. In other words, the Transverse Mercator involves
projecting the Earth onto a cylinder which is always in contact with a meridian
instead of with the Equator.

The central meridian intersects two meridians and the Equator at right angles; these
four lines are straight. All other meridians and parallels are complex curves which are
concave toward the central meridian. Shape is true only within small areas and the
areas increase in size as they move away from the central meridian. Most other IDL
projections are scaled in the range of +/– 1 to +/– 2 Pi; the UV plane of the
Transverse Mercator projection is scaled in meters. The conformal nature of this
projection and its use of the meridian makes it useful for north-south regions.

Figure 13-9: Cylindrical Projections
Using IDL Cylindrical Projections

368 Chapter 13: Map Projections
The Clarke 1866 ellipsoid is used for the default, but its parameters can be altered
with the ELLIPSOID keyword.

Example: The UTM Map

To create a UTM map, centered near London, with a scale of 10 million to one, type
the following:

MAP_SET, /TRANSVERSE, 51, 0, SCALE=10e6, $
/GRID, LATDEL=2.5, LONDEL=2.5, /LABEL, LONLAB=48, $
/CONTINENTS, E_CONT={COUNTRIES:1, COASTS:1}, $
TITLE='UTM Projection'

When the eccentricity of the Earth is not important, global scale Transverse Mercator
projections can be easily created using the Mercator projection with the
CENTRAL_AZIMUTH keyword set to 90 degrees, and setting Rot to rotate the map
90 degrees. For example, to create the Transverse Mercator map showing North and
South America, with a central meridian of –90 degrees West and centered on the
Equator, shown in the upper-right corner of the figure in the “Mercator Projection”
section. It is produced by the following statement:

MAP_SET, /MERCATOR, 0, -75, 90, CENTRAL_AZIMUTH=90, $
/ISOTROPIC, LIMIT= [32,-130, 70,-86, -5,-34, -58, -67], $
/GRID, LATDEL=15, LONDEL=15, /CONTINENTS, $
TITLE = 'Transverse Mercator'

Cylindrical Equidistant Projection

The cylindrical equidistant projection is one of the simplest projections to construct.
If EQ is the equator, this projection simply lays out horizontal and vertical distances
on the cylinder to coincide numerically with their measurements in latitudes and
longitudes on the sphere. Hence, the equidistant cylindrical projection maps the
entire globe to a rectangular region bounded by

If EQ is the equator, meridians and parallels will be equally spaced parallel lines.

The following code is used to produce a simple cylindrical equidistant projection and
an oblique cylindrical equidistant projection as shown in the lower-left and lower-
right sections of the figure under the “Mercator Projection” heading:

–180 ≤ u ≤ 180

and

–90 ≤ v ≤ 90
Cylindrical Projections Using IDL

Chapter 13: Map Projections 369
MAP_SET, /CYLINDRICAL, 0, 0, /GRID, /CONTINENTS, $
TITLE = 'Simple Cylindrical Equidistant'

Now rotate the projection by 45%:

MAP_SET, /CYLINDRICAL, 0, 0, 45, $
/GRID, /CONTINENT, /HORIZON, $
TITLE='Oblique Cylindrical Equidistant'

Miller Cylindrical Projection

The Miller projection is a simple mathematical modification of the Mercator
projection, incorporating some aspects of cylindrical projections. It is not equal-area,
conformal or equidistant along the meridians. Meridians are equidistant from each
other, but latitude parallels are spaced farther apart as they move away from the
Equator, thereby keeping shape and area distortion to a minimum. The meridians and
parallels intersect each other at right angles, with the poles shown as straight lines.
The Equator is the only line shown true to scale and free of distortion.

Conic Projection

The Lambert’s conformal conic with two standard parallels is constructed by
projecting the globe onto a cone passing through two parallels. Additional scaling
achieves conformity. The pole under the cone’s apex is transformed to a point, and
the other pole is mapped to infinity. The scale is correct along the two standard
parallels. Parallels are projected onto circles and meridians onto equally spaced
straight lines. The STANDARD_PARALLELS keyword specifies the latitudes of one
or two standard parallels.

The following statement produces the map shown in the accompanying figure, which
features North America with standard parallels at 20 degrees and 60 degrees:

MAP_SET, /CONIC, 40, -80, STANDARD_PARALLELS=[20,60], $
/ISOTROPIC, LIMIT=[0, -260, 90, 100], $
/GRID, LATDEL=15, LONDEL=20, /CONTINENT, $
TITLE= 'Lambert’s Conic'
Using IDL Cylindrical Projections

370 Chapter 13: Map Projections
Albers Equal-Area Conic Projection

The Albers Equal-Area Conic is like most other conics in that meridians are equally
spaced radii, parallels are concentric arcs of circles and scale is constant along any
parallel. To maintain equal area, the scale factor along meridians is the reciprocal of
the scale factor along parallels, with the scale along the parallels between the two
standard parallels too small, and the scale beyond the standard parallels too large.
Standard parallels are correct in scale along the parallel, as well as in every direction.

The Albers projection is particularly useful for predominantly east-west regions. Any
keywords for the Lambert conformal conic also apply to the Albers conic.

Figure 13-10: Lambert’s Conformal Conic with Standard Parallels at 20° and 60°
Cylindrical Projections Using IDL

Chapter 13: Map Projections 371
Pseudocylindrical Projections

Pseudocylindrical projections are distinguished by the fact that in their simplest form,
lines of latitude are parallel straight lines and meridians are curved lines.

Robinson Cylindrical

This pseudocylindrical projection was designed by Arthur Robinson in 1963 for
Rand McNally. It is suitable for World maps and is a compromise to best fulfill a
number of conflicting requirements, including an uninterrupted format, minimal
shearing, minimal apparent area-scale distortion for major continents, and simplicity.
It was designed to make the world look right. Since its introduction, it has been
adopted by the National Geographic Society for many of their world maps.

Each individual parallel is equally divided by the meridians. The poles are
represented by lines rather than points to avoid compressing the northern land
masses.

Note
The central meridian should always be 0 degrees longitude to retain the correct
balance of shapes, sizes, and relative positions.

The next statement produces the Robinson projection shown in the lower-left corner
of the figure which follows.

MAP_SET, /ROBINSON, 0, 0, /ISOTROPIC, /GRID, $
/HORIZON, E_CONTINENTS={FILL:1}, TITLE='Robinson'

Sinusoidal Projection

With the sinusoidal projection, the central meridian is a straight line and all other
meridians are equally spaced sinusoidal curves. The scaling is true along the central
meridian as well as along all parallels.

The sinusoidal projection is one of the easiest projections to construct. The formulas
below from Snyder (1987) give the relationship between the latitude φ and longitude
λ of a point on the globe and its image on the UV plane.

u = λcosφ

v = φ
Using IDL Pseudocylindrical Projections

372 Chapter 13: Map Projections
The parameters P0Lat and Rot of the MAP_SET procedure must be zero. If they are
not, an error message results and the procedure MAP_SET will reset both of these
parameters to zero and continue. By default, P0Lon (the central longitude) is zero, but
the user can set it to any other value between –180 and 180. If the keyword LIMIT is
undefined, the entire globe is the region selected for mapping.

The following statements produces the sinusoidal map of the whole globe centered at
longitude 0 degrees and latitude 0 degrees:

MAP_SET, /SINUSOIDAL, /ISOTROPIC, $
/CONTINENTS, TITLE='Sinusoidal'

MAP_GRID, LONDEL=20, /HORIZON

The result of these statements is shown in the upper-left corner of the following
figure.

Mollweide Projection

With the Mollweide projection, the central meridian is a straight line, the meridians
90 degrees from the central meridian are circular arcs and all other meridians are
elliptical arcs. The Mollweide projection maps the entire globe onto an ellipse in the
UV plane. The circular arcs encompass a hemisphere and the rest of the globe is
contained in the lunes on either side.

Figure 13-11: Pseudocylindrical Projections
Pseudocylindrical Projections Using IDL

Chapter 13: Map Projections 373
If the keyword LIMIT is not set, the whole globe will be mapped to the plane. The
following statement produces a Mollweide projection in oblique form, as illustrated
in the upper-right corner of the previous figure:

MAP_SET, /MOLLWEIDE, 45, 0, /ISOTROPIC, $
/GRID, LATDEL=20, LONDEL=20, $
/HORIZON, E_CONTINENTS={FILL:1}, $
TITLE='Oblique Mollweide'

Since the center of the projection is not on the equator, parallels of latitude are not
straight lines, just as they are not straight lines with an oblique Mercator or
cylindrical equidistant projection.

Goode’s Homolosine Projection

The Goode interrupted Homolosine projection, developed by J. Paul Goode, in 1923,
is designed for World maps to show the continents with minimal scale and shape
distortion. This is accomplished by interrupting the projection and choosing several
central meridians to coincide with large land masses. This projection is a fusion of
the Sinusoidal projection between the latitudes of 44.7 degrees North and South, and
the Mollweide projection between these parallels and the poles.

The following statement produced the example of Goode’s Homolosine projection in
the lower-right corner of the previous figure:

MAP_SET, /GOODESHOMOLOSINE, 0, 0, /ISOTROPIC, /GRID, $
LATDEL=15, LONDEL=20, /HORIZON, E_CONTINENTS={FILL:1}, $
TITLE='Goode Homolosine'
Using IDL Pseudocylindrical Projections

374 Chapter 13: Map Projections
Putting Data on Maps

The procedures PLOT, OPLOT, PLOTS, XYOUTS, and CONTOUR can be used to
display and annotate geographical data on maps created by the routines MAP_SET,
MAP_GRID, and MAP_CONTINENTS. The MAP_IMAGE procedure can be used
to warp regularly-gridded images to map projections.

Example—Using CONTOUR with MAP_SET

The following simple example creates a CONTOUR plot over a Mollweide map
projection and then over a polar stereographic projection. The resulting map is shown
below.

Figure 13-12: Combining CONTOUR with MAP_SET
Putting Data on Maps Using IDL

Chapter 13: Map Projections 375
; Make a 10 degree latitude/longitude grid covering the Earth:
lat = REPLICATE(10., 37) # FINDGEN(19) - 90.
lon = FINDGEN(37) # REPLICATE(10, 19)
; Convert lat and lon to Cartesian coordinates:
X = COS(!DTOR * lon) * COS(!DTOR * lat)
Y = SIN(!DTOR * lon) * COS(!DTOR * lat)
Z = SIN(!DTOR * lat)
; Create the function to be plotted, set it equal
; to the distance squared from (1,1,1):
F = (X-1.)^2 + (Y-1.)^2 + (Z-1.)^2
MAP_SET, /MOLLWEIDE, 0, 0, /ISOTROPIC, $

/HORIZON, /GRID, /CONTINENTS, $
TITLE='Mollweide Contour'

CONTOUR, F, lon, lat, NLEVELS=7, $
/OVERPLOT, /DOWNHILL, /FOLLOW

; Fill the contours over the northern hemisphere and
; display in a polar sterographic projection:
MAP_SET, /STEREO, 90, 0, $

/ISOTROPIC, /HORIZON, E_HORIZON={FILL:1}, $
TITLE='Stereographic Contour'

; Display points in the northern hemisphere only:
CONTOUR, F(*,10:*), lon(*,10:*), lat(*,10:*), $

/OVERPLOT, /FILL, NLEVELS=5
MAP_GRID, /LABEL, COLOR=255
MAP_CONTINENTS, COLOR=255

Limitations

Filling contours or polygons over maps that cover more than a hemisphere will
produce incorrect results. This is because of the ambiguity between polygons that
enclose an area, and those that enclose the entire surface of the sphere outside the
area; and because of the ambiguity of determining the clockwise-ness of polygons on
a sphere that cover more than a hemisphere.
Using IDL Putting Data on Maps

376 Chapter 13: Map Projections
High-Resolution Continent Outlines

IDL supports two different datasets that contain continent outlines and other
geographical and political boundaries. The default data set is a low-resolution
continental outline database that is automatically installed when you install IDL. The
high-resolution database was adapted from the 1993 CIA World Map database by
Thomas Oetli of the Swiss Meteorological Institute. The high-resolution outlines are
found in an optional data set that may not have been installed when your copy of IDL
was first installed.

To access the high-resolution data set, simply set the HIRES keyword when calling
MAP_CONTINENTS with the COASTS, COUNTRIES, FILL_CONTINENTS, or
RIVERS keywords. You can also get high-resolution continent boundaries by calling
MAP_SET with the HIRES and CONTINENTS keywords set. See
MAP_CONTINENTS in the IDL Reference Guide for an example of using the high-
resolution outlines.

Resolution of Map Databases

Data points in the CIA World Map database are approximately one kilometer apart.
Note, however, that in the case of the coast and river databases, actual distances
between the data points may be much smaller because of convolutions in the
coastline or riverbed.

Data points in the low-resolution map database are either a subset of the high-
resolution database (rivers and country boundaries) or are based on the continental
map database used in previous versions of IDL (the file supmap.dat in the
resource/maps subdirectory of the IDL distribution). Data points in the low-
resolution database are approximately 10 kilometers apart.

Neither of the map databases is intended for high-precision work.

The following table compares the low-resolution and high-resolution map databases:

Feature Low-Resolution High-Resolution

Coastlines, islands, and
lakes (including
continental outlines)

Data in file supmap.dat. Entire CIA World Map

Table 13-1: Comparison of Low- and High-resolution Map Databases
High-Resolution Continent Outlines Using IDL

Chapter 13: Map Projections 377
Continental polygons Data extracted from
supmap.dat.

Every 20th point of
CIA World Map.

Rivers Every 250th point of the CIA
World Map.

Entire CIA World Map.

National boundaries Every 100th point of CIA
World Map.

Entire CIA World Map.

Feature Low-Resolution High-Resolution

Table 13-1: Comparison of Low- and High-resolution Map Databases
Using IDL High-Resolution Continent Outlines

378 Chapter 13: Map Projections
References

Greenwood, David (1964), Mapping, University of Chicago Press, Chicago.

Pearson, Frederick II (1990), Map Projections: Theory and Applications, CRC Press,
Inc., Boca Raton.

Snyder, John P. (1987), Map Projections—A Working Manual, U.S. Geological
Survey Professional Paper 1395, U.S.Government Printing Office, Washington, D.C.
References Using IDL

Chapter 14:

Image Display
Routines

The following topics are found in this chapter:
Overview . 380
Images . 381
Imaging Routines 382
Image Display . 383
Reading from the Display Device 387

Color Tables . 389
TrueColor Displays 396
Controlling the Device Cursor 400
References . 401
Using IDL 379

380 Chapter 14: Image Display Routines
Overview

IDL provides a powerful environment for image processing and display. The routines
described in this chapter provide the interface between IDL and the image display
system. This chapter describes these image display and control routines and provides
examples of their use.

Graphics Used in Examples

The examples in this chapter are all written to take advantage of IDL Direct Graphics.
Overview Using IDL

Chapter 14: Image Display Routines 381
Images

An image consists of a two-dimensional array of pixels. The value of each pixel
represents the intensity and/or color of that position in the scene. Images of this form
are known as sampled or raster images, because they consist of a discrete grid of
samples. Such images come from many different sources and are a common form of
representing scientific and medical data.
Using IDL Images

382 Chapter 14: Image Display Routines
Imaging Routines

The following IDL routines are used for the display and manipulation of images:

TVCRS

This procedure manipulates the image device cursor. TVCRS allows the cursor to be
enabled and disabled, as well as allowing it to be positioned.

TV

This procedure displays images on the image display.

TVSCL

This procedure scales the intensity values of the image into the range of the display
device, then displays the result on the image display.

TVLCT

This procedure loads a new color table into the display device.

TVRD

This function reads image pixels back from the display device.

In addition, most routines used for plotting and graphics can be used with the display
of images as well. These routines are described in Chapter 11, “Direct Graphics
Plotting” and Chapter 14, “Image Display Routines”. For example, to overlay an
image and its contour plot, the output of the CONTOUR procedure is combined with
that of TV. The CURSOR routine, described in “Using the CURSOR Procedure” on
page 300, reads the position of the interactive pointing device and may also be used
to determine the location of image pixels.
Imaging Routines Using IDL

Chapter 14: Image Display Routines 383
Image Display

The TV and TVSCL procedures display images on the screen. These procedures use
the same arguments and keywords and differ only in that TVSCL scales the image
into the intensity range of the display device, while TV displays the image directly.
They have the form:

TV, IMAGE[, POSITION]
TV, IMAGE[, X, Y[, CHANNEL]]
TVSCL, IMAGE[, POSITION]
TVSCL, IMAGE[, X, Y[, CHANNEL]]

where the arguments and keywords are as follows:

IMAGE

A vector or two-dimensional matrix to be displayed as an image. If not already of
byte type, it is converted prior to use.

X, Y

If present, these arguments specify the lower-left coordinate of the displayed image.

POSITION

Position number of the image. Image positions are discussed in detail below.

CHANNEL

Some image display devices are capable of storing more than a single image or can
combine three single color images to form a TrueColor image. CHANNEL specifies
the memory channel to be written. It is assumed to be zero if not specified. This
parameter is ignored on display systems that have only one memory channel.

If no optional parameters are present, IMAGE is output to the display with its lower-
left corner at coordinate (0, 0). The optional parameters can be used to specify the
screen position of the image in a variety of ways.

Image Orientation

The screen coordinate system for image displays puts the origin, (0, 0), at the lower-
left corner of the device. The upper-right corner has the coordinate (xsize–1, ysize–1),
where xsize and ysize are the dimensions of the visible area of the display. The
descriptions of the image display routines that follow assume a display size of
512 × 512, although other sizes may be used.
Using IDL Image Display

384 Chapter 14: Image Display Routines
The system variable !ORDER controls the order in which the image is written to the
screen. Images are normally output with the first row at the bottom, i.e., in bottom-to-
top order, unless !ORDER is 1, in which case images are written on the screen from
top to bottom. The ORDER keyword also can be specified with TV and TVSCL. It
works in the same manner as !ORDER except that its effect only lasts for the duration
of the single call—the default reverts to that specified by !ORDER.

An image can be displayed with any of the eight possible combinations of axis
reversal and transposition by combining the display procedures with the ROTATE
function.

Image Position

Image positions run from the left of the screen to the right and from the top of the
screen to the bottom. If a position number is used instead of x and y, the position of
the image is calculated from the dimensions of the image (using integer arithmetic) as
follows:

xsize, ysize = size of display or window

xdim, ydim = dimensions of array

Nx = xsize/xdim = images across screen

x = xdimPositionmoduloNx = startingx

y = ysize – ydim (1 + Position/Nx) = startingy

For example, when displaying 128 × 128 images on a 512 × 512 display, the position
numbers run from 0 to 15 as follows:

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

Image Size

Most image devices have a fixed number of display pixels. Common sizes are
512 × 512, 1280 × 1024, and 900 × 1152 (for Sun workstations). Such pixels have a
fixed size which cannot be changed. For such devices, the area written on the screen
is the same size as the dimensions of the image array. One-dimensional vectors are
considered row vectors. The x and y parameters specify the coordinates of the lower-
left corner of the area written on the display.

There are some devices, however, that have the ability to place an image with any
number of pixels into an area of arbitrary size. PostScript devices are a notable
Image Display Using IDL

Chapter 14: Image Display Routines 385
example. Such devices are said to have scalable pixels, because there is no direct
connection between the number of pixels in the image and the physical space it
occupies in the displayed image. When the current image device has scalable pixels,
IDL sets the first bit of !D.FLAGS. The following IDL statement can be used to
determine if the current device has scalable pixels:

SP = !D.FLAGS AND 1

SP will be nonzero if the device has scalable pixels. When displaying an image on a
device with scalable pixels, the default uses the entire display surface for the image.
The XSIZE and YSIZE keywords can be used to override this default and specify the
width and height that should be used.

The XSIZE and YSIZE keywords also should be used when positioning images with
the POSITION argument to TV or TVSCL. POSITION normally uses the size of the
image in pixels to determine the placement of the image, but this is not possible for
devices with scalable pixels. Instead, the default for such devices is to assume a
single position that fills the entire available display surface. However, if XSIZE and
YSIZE are specified, POSITION will use them to determine image placement.

Examples

; Set all display memory to 100:
TV, REPLICATE(100B, 512, 512)
; Define a 50 column by 100 row array:
ABC = BYTARR(50, 100)
; Display array ABC starting at location x = 300, y=400.
; Display pixels in columns 300 to 349, and
; rows 400 to 499 are zeroed.
TV, ABC, 300, 400
; Display image divided by 2 at position number 12:
TV, ABC/2, 12
; Output image to memory channel 2, lower-left
; corner at (256, 256).
TV, A, 256, 256, 2
; Assume file one contains a sequence of 64 × 64 byte arrays:
AA = ASSOC(1, BYTARR(64, 64))
; Display 64 images from file, from left to right and
; top to bottom, filling a 512 × 512 area:
FOR I = 0, 63 DO TV, AA[I], I

Image Scaling

An image can be contrast enhanced so any subrange of pixel values are scaled to fill
the entire range of displayed brightnesses using a variety of methods.
Using IDL Image Display

386 Chapter 14: Image Display Routines
For example, if the image A contains an object superimposed on a varying
background and the pixel values in the object range from a value of S to the brightest
value in the image the IDL statement:

TVSCL, A > S

will use the entire range of display brightnesses to display the object. The expression
A > S results in an image in which each pixel in A less than S is set to S. Thus, S
becomes the new minimum intensity. The TVSCL procedure scales the new image
into the available number of color-table entries before loading it into the display.
Again, the image A is not changed.

Another method that is more efficient, although slightly obscure, is to use the
BYTSCL function to scale the array as follows:

TV, BYTSCL(A, MIN = S, TOP = !D.TABLE_SIZE)

This method is more efficient because the value S is known and avoids scanning the
array for the minimum and maximum values. Also, one less array operation is
required.

If the object in A has values from 2.6 to 9.4, the statements

;Slow method.
TVSCL, A > 2.6 < 9.4
;Faster method.
TV, BYTSCL(A, MIN=2.6, MAX=9.4, TOP = !D.TABLE_SIZE)

will truncate the image so 2.6 is the new minimum and 9.4 is the new maximum
before scaling and display.

Some examples of using the TVSCL function follow.

;Display square root of image:
TVSCL, SQRT(A)
;Display unsharp masked image:
TVSCL, A - SMOOTH(A, 3)
;Display scaled sum at position number 12:
TVSCL, A + B, 12
Image Display Using IDL

Chapter 14: Image Display Routines 387
Reading from the Display Device

The TVRD function reads the contents of the display device memory back into an
IDL variable. One use for this capability is to build up a complex display using many
IDL statements, and then read the resulting image back as a single unit for storage in
a file.

The TVRD function returns the contents of the specified rectangular portion of the
display subsystem’s memory. The coordinate (x0, y0) is the starting coordinate of the
data to be read, and Nx, Ny is the size of the rectangle in columns and rows. This
results in a byte array of dimensions Nx × Ny.

A Note on Reading Data from Windows

On some systems, when backing store is provided by the window system
(RETAIN=1), reading data from a window using TVRD() may cause unexpected
results. For example, data may be improperly read from the window even when the
image displayed on screen is correct. Having IDL provide the backing store
(RETAIN=2) ensures that the window contents will be read properly.

The TVRD function has the form:

TVRD([X0, [Y0, [NX, [NY[, Channel]]]]])

where the arguments are described as follows.

X0

Specifies the starting column of data to read.

Y0

Specifies the starting row of data to read.

NX

The number of columns to read.

NY

The number of rows to read.

Channel

The memory channel to be read. It is assumed to be zero if not specified. This
parameter is ignored on display systems that only have one memory channel.
Using IDL Reading from the Display Device

388 Chapter 14: Image Display Routines
If the system variable !ORDER is set to zero, then data are read from the bottom up;
otherwise, data are read in the top-down direction.

Example

The following statement inverts the 100 × 100 area of the display starting at
(200, 300):

;Reverse area:
TV, NOT TVRD(200, 300, 100, 100)

Ability to Read from Display

Not all image devices are able to support reading pixels back from device memory. If
the current device has this ability, IDL sets the eighth bit of !D.FLAGS.

; Determine if the current device allows reading
; from display memory:
TEST = !D.FLAGS AND 128

TEST will be nonzero if the device allows such operations.
Reading from the Display Device Using IDL

Chapter 14: Image Display Routines 389
Color Tables

There are numerous systems for the measuring and specification of color. Most
systems are three-dimensional in nature. For a complete discussion of color systems,
refer to Foley and Van Dam (1982, Chapter 17). Parts of this discussion are taken
from that chapter.

Most devices capable of displaying color use the RGB (red, green, and blue) color
system. Other common color systems include the Munsell, HSV (hue, saturation, and
value), HLS (hue, lightness, and saturation), and CMY (cyan, magenta, and yellow)
color systems. Algorithms exist to convert colors from one system to another. IDL
accepts color specifications in the RGB, HLS, or HSV color systems.

The RGB color system, as implemented in IDL, uses a three-dimensional Cartesian
coordinate system with the value of each color ranging from 0 to 255. Each
displayable color is a point within this cube, shown in Figure 14-1 (after Foley and
Van Dam). The origin, (0, 0, 0), where each color coordinate is 0, is black. The point
at (255, 255, 255) is white and represents an additive mixture of the full intensity of
each of the three colors. Points along the main diagonal—where the intensities of
each of the three primary colors are equal—are shades of gray. The color yellow is
represented by the coordinate (255, 255, 0), or a mixture of 100% red, plus 100%
green, and no blue.

Typically, digital display devices represent each component of an RGB color
coordinate as an n-bit integer in the range of 0 to 2n –1. Each displayable color is an
RGB coordinate triple of n-bit numbers yielding a palette containing 23n total colors.
Therefore, for 8-bit colors, each color coordinate can range from 0 to 255, and the
total palette contains 224 or 16,777,216 colors.

A display with an m-bit pixel can represent 2m colors simultaneously, given enough
pixels. In the case of 8-bit colors, 24-bit pixels are required to represent all colors.
The more common case is a display with 8 bits per pixel which allows the display of
28 = 256 colors selected from the much larger palette.

If there are not enough bits in a pixel to represent all colors, m < 23n, a color
translation table is used to associate the value of a pixel with a color triple. This table
is an array of color triples with an element for each possible pixel value. Given 8-bit
pixels, a color table containing 28 = 256 elements is required. The color table element
with an index of i specifies the color for pixels with a value of i.

To summarize, given a display with an n-bit color representation and an m-bit pixel,
the color translation table, C, is a 2m long array of RGB triples:
Using IDL Color Tables

390 Chapter 14: Image Display Routines
Ci = {ri, gi, bi}, 0 ≤ i < 2m

0 ≤ ri, gi, bi < 2n

Objects containing a value, or color index, of i are displayed with a color of Ci.

The IDL COLOR_CONVERT procedure can be used to convert color triples to and
from the RGB color system and the HLS and HSV systems.

You can display TrueColor images on pseudo-color displays by using the
COLOR_QUAN function. This function creates a pseudo-color palette for displaying
the TrueColor image and then maps the TrueColor image to the new palette. See
COLOR_QUAN in the IDL Reference Guide for more information.

Loading Color Tables

IDL maintains its own internal color table which is read and written by the TVLCT
procedure. When this table is modified, it is loaded into the currently selected
graphics output device. A call to this procedure has the form:

TVLCT, V1, V2, V3 [, Start]

where the arguments and keywords are as follows:

Figure 14-1: RGB Color Cube. (Note: grays are on the main diagonal.)
Color Tables Using IDL

Chapter 14: Image Display Routines 391
V1, V2, and V3

The vectors containing the intensity or value of each color for each index in the RGB,
HLS, or HSV color systems. Standard devices have an 8-bit color representation so
the color values should range from 0 to 255. These vectors can contain up to 2m

elements (usually 256), assuming the display contains m bit pixels.

Start

The starting index in the color translation table into which V1, V2, and V3 are loaded.
If not specified, a value of 0 is used, causing the tables to be loaded starting at the
first element of the translation vectors. The Start argument can be used to change
only part of the color table.

In addition, the following keyword parameters can also be present:

GET

Returns the RGB values from the internal color table into the three variables.

HLS

Indicates that the parameters specify color using the HLS color system. The plain
argument parameters are in the order H-L-S. Hue is expressed in degrees, and the
lightness and saturation range from 0 to 1.

HSV

Indicates that the parameters specify color using the HSV color system. The plain
argument parameters are in the order H-S-V. As above, hue is in degrees, and the
saturation and value range from 0 to 1.

Example

This example creates a graph with the axes drawn in white, then successively adds
red, green, blue, and yellow lines. As there are five distinct colors, plus one color for
the background, a six-element color table is created. Usually, color index 0 represents
black (0, 0, 0). We arbitrarily choose color index 1 to be white (1, 1, 1), 2 as red (1, 0,
0), 3 as green (0, 1, 0), 4 as blue (0, 0, 1), and 5 as yellow (1, 1, 0). The display must
have at least 3 bits per pixel to represent six colors simultaneously, and an 8-bit color
table is assumed.

;Specify the red component of each color:
RED = [0, 1, 1, 0, 0, 1]
;Specify the green component of each color:
GREEN = [0, 1, 0, 1, 0, 1]
;Specify the blue component of each color:
Using IDL Color Tables

392 Chapter 14: Image Display Routines
BLUE = [0, 1, 0, 0, 1, 0]
;Load the first six elements of the color table:
TVLCT, 255 * RED, 255 * GREEN, 255 * BLUE
;Draw the axes in white, color index 1:
PLOT, COLOR = 1, /NODATA,...
;Draw in red:
OPLOT, COLOR = 2, ...
;Draw in green:
OPLOT, COLOR = 3, ...
;Draw in blue.
OPLOT, COLOR = 4, ...
;Draw in yellow:
OPLOT, COLOR = 5,

The INDGEN function is handy when creating larger color tables in which each
color’s intensity can be expressed as a function of its index:

; Straight line, A[I] = I:
A = INDGEN(256)
; Display image with a linear red scale, disable green and blue:
TVLCT, A, A * 0, A * 0
; Display with linear black and white scale:
TVLCT, A, A, A
; Warm body temperature scale. Red is linear,
; green starts at 128, and blue starts at 192:
TVLCT, A, 2 * (A - 128) > 64, 4 * (A - 192) > 0

Color Table Procedures

The following IDL procedures are used to manipulate color tables:

LOADCT

Load predefined color tables. LOADCT has one parameter: the index of the
predefined color table to be loaded. There are 40 pre-defined color tables in the file
colors1.tbl, which is supplied with IDL. To obtain a menu listing the available color
tables, call LOADCT with no parameters. Standard tables are listed below.

Number Name Number Name

0 Black & White Linear 21 Hue Sat Value 1

1 Blue/White Linear 22 Hue Sat Value 2

2 Green-Red-Blue-White 23 Purple-Red +
Stripes

Table 14-1: Predefined Color Tables
Color Tables Using IDL

Chapter 14: Image Display Routines 393
XLOADCT

This procedure provides a widget interface to LOADCT. Pre-defined color tables can
be loaded and manipulated using this tool. Tables can be stretched and Gamma
corrected interactively using this procedure.

XPALETTE

This widget procedure allows you to create your own color tables using a set of three
sliders. This procedure can interpolate the space between color indices (to create
smooth color transitions) or edit individual colors.

3 Red Temperature 24 Beach

4 Blue-Green-Red-Yellow 25 Mac Style

5 Standard Gamma-II 26 Eos A

6 Prism 27 Eos B

7 Red-Purple 28 Hardcandy

8 Green/White Linear 29 Nature

9 Green/White Exponential 30 Ocean

10 Green-Pink 31 Peppermint

11 Blue-Red 32 Plasma

12 16 Level 33 Blue-Red 2

13 Rainbow 34 Rainbow 2

14 Steps 35 Blue Waves

15 Stern Special 36 Volcano

16 Haze 37 Waves

17 Blue-Pastel-Red 38 Rainbow18

18 Pastels 39 Rainbow + white

19 Hue Sat Lightness 1 40 Rainbow + black

20 Hue Sat Lightness 2

Number Name Number Name

Table 14-1: Predefined Color Tables
Using IDL Color Tables

394 Chapter 14: Image Display Routines
MODIFYCT

Saves color tables for later use by LOADCT.

HSV

Makes and loads color tables based on the HSV color system. A spiral through the
single-ended HSV cone is traced. The color representation of pixel values is linearly
interpolated from beginning and ending values of hue, saturation, and value.

HLS

Makes and loads color tables based on the HLS color system which is based on the
Otswald color system. As with the HSV procedure, spirals are interpolated in the
three-dimensional color space.

PSEUDO

Generates and loads a pseudo-color table based on the LHB (lightness, hue, and
brightness) system.

STRETCH

Linearly expands the entire range of the last color table loaded to cover a given range
of pixel values. STRETCH has two parameters: the pixel value to be displayed with
color index 0 and the pixel value to be displayed with the maximum color index:

STRETCH, LOW, HIGH

Example

; Expand the color tables so that pixels in
; the range of 100 to 150 fill the entire color range:
STRETCH, 100, 150

To revert to a normal color table, call STRETCH with no parameters.

Note
The window-oriented procedures will not work without a window system.

Obtaining the Color Tables

All of the IDL color-table procedures maintain the current color table in a common
block called COLORS, defined as follows:

COMMON COLORS, R_orig, G_orig, B_orig, R_curr, G_curr, B_curr
Color Tables Using IDL

Chapter 14: Image Display Routines 395
The variables are integer vectors of length equal to the number of color indices. Your
program can access these variables by defining the common block. The convention is
that routines that modify the current color table should read it from R_orig, G_orig,
and B_orig, then load the color table using TVLCT and leave the resulting color table
in R_curr, G_curr, and B_curr.

Color Tables—Switching Between Devices

Use the SET_PLOT procedure to direct the graphics output to different devices.
Because devices have differing capabilities and not all are capable of representing the
same number of colors, the treatment of color tables when switching devices is
somewhat tricky.

After selecting a new graphics output device, SET_PLOT will perform one of the
following color-table actions depending upon which keyword parameters are
specified:

• The default is to do nothing. The problem with this treatment is that the
internal color tables incorrectly reflect the state of the device’s color tables
until TVLCT is called (usually via LOADCT).

• If the COPY keyword parameter is set, the internal color tables are copied into
the device. This is straightforward if both devices have the same number of
color indices. If the new device has more colors than the old device, some
color indices will be invalid. If the new device has less colors than the old, not
all the colors are saved. This is the preferred method if you are displaying
graphics and each color index is explicitly loaded.

• When the INTERPOLATE keyword is set, the new device’s table is loaded by
interpolating the old color table to span the new number of color indices. This
method works best when displaying images with continuous color ranges.
Using IDL Color Tables

396 Chapter 14: Image Display Routines
TrueColor Displays

IDL supports the use of some TrueColor displays with 24 bits per pixel. TrueColor
displays have multiple channels. That is, they store information about each primary
color component (red, green, and blue) of a pixel separately. A TrueColor display
with n bits per memory channel can display 23n simultaneous colors, as opposed to
the 2n simultaneous colors available with a normal indexed (pseudo) color display.
Images can be transferred to and from each individual memory channel, or to all
channels simultaneously.

The X Window visuals TrueColor and DirectColor are among the TrueColor devices
supported by IDL.

Configuration

The TrueColor display is configured as a single display with three channels:

Lookup Tables

Warning
Not all TrueColor display systems have writable color lookup tables.

Each output channel, red, green, or blue, is routed through its own 8-bit deep, 256
element lookup table. The lookup tables can be used to compensate for color
inaccuracies generated by the display hardware or present in the acquisition process.
Initially, each lookup table is loaded with a linear ramp, mapping its input directly to
its output.

Channel
Number Output

0 All colors

1 Red

2 Green

3 Blue

Table 14-2: TrueColor Display Channels
TrueColor Displays Using IDL

Chapter 14: Image Display Routines 397
As the TrueColor lookup tables are of the same size and number of elements as those
on a pseudo-color display, operation of the TVLCT procedure, which loads the
lookup tables, is unchanged.

Furthermore, if the same image is loaded into each channel, operation of the display
mimics that of a standard 8-bit deep pseudo-color display. Most, but not all, IDL
image processing procedures written for a standard color display will run on a
TrueColor display without modification. The routines that transfer images to the
display, TV and TVSCL, write the same 8-bit data to each channel (channel 0) if no
channel parameter is present. The function TVRD, which reads data from the display,
returns the maximum value contained in the three-color channels for each pixel if no
channel parameter is present.

Color Indices

The color index specifier can range from 0 to 224–1. The system variable field
!D.N_COLORS, which contains the number of colors, is set to 224 on a TrueColor
display.The system variable field, !D.TABLE_SIZE, contains the number of RGB
color table elements.

The low 8 bits, bits 0 to 7, of the color index are written to the red channel; bits 8 to
15 are written to the green; and bits 16 to 23 are written to the blue. For example, a
given RGB, the index is R + 256(G + 256B). To create a plot with a given color
(assuming linear lookup tables), use the following statement:

PLOT, X, Y, COLOR = R + 256L * (G + 256L * B)

TrueColor Images

Images can be transferred to and from the display in either 8-bit or 24-bit mode. The
CHANNEL parameter specifies the source or destination channel number for 8-bit
images, and the TRUE keyword indicates for 24-bit images the method of channel
interleaving. If neither keyword parameter is present, the 8-bit image is written to all
three-color channels, yielding the same effect as if the channel parameter is specified
as 0.

For example, to transfer three 8-bit images contained in the arrays R, G, and B to
their respective channels, use the following statements:

;Load red in channel 1:
TV, R, 0, 0, 1
;Load green in channel 2:
TV, G, 0, 0, 2
;Load blue in channel 3:
TV, B, 0, 0, 3
Using IDL TrueColor Displays

398 Chapter 14: Image Display Routines
The position parameters (0, 0 above) can be altered to write to any location in the
window.

For 24-bit images, the RGB data can be interleaved by pixel, by line, or by image.
Use the TRUE parameter to specify the method of interleaving. A c column by l line
TrueColor image is dimensioned as follows:

For example, to write a TrueColor, line interleaved image contained in the variable t,
with its lower-left corner at coordinate (100, 200), use the following statement:

TV, T, 100, 200, TRUE = 2

Reading Images

To read from the display to an IDL variable or expression, use the TVRD function
with either the CHANNEL parameter or TRUE keyword parameter. The calling
sequence for TVRD is:

Result = TVRD([X0, Y0, Nx, Ny, Channel])

where (X0, Y0) specifies the window coordinate of the lower-left corner of the
rectangle to be read, and (Nx, Ny) contains the number of columns and rows to read.
Note that all parameters to TVRD are optional. If no arguments are supplied, the
entire area of the display device is returned.

When used without the TRUE parameter, TVRD returns an (Nx, Ny) byte image read
from the indicated channel. If the channel number is not specified or is zero, the
maximum RGB value of each pixel is returned, approximating the luminance.

If present and nonzero, the TRUE keyword indicates that a TrueColor image is to be
read and specifies the index of the dimension over which color is interleaved. The
result is a (3, Nx, Ny) pixel interleaved array if TRUE is 1; or an (Nx, 3, Ny) line
interleaved array if TRUE is 2; or an (Nx, Ny, 3) image interleaved array if TRUE is
3.

Some examples of TVRD follow.

TRUE Value Dimensions Interleaving

1 (3, c, l) Pixel

2 (c, 3, l) Line

3 (c, l, 3) Image

Table 14-3: Values for the TRUE Keyword
TrueColor Displays Using IDL

Chapter 14: Image Display Routines 399
; Read a 512 × 512 image, starting at (0, 0),
; from the red channel into R:
R = TVRD(0, 0, 512, 512, 1)
; Read a TrueColor 512 × 512, line interleaved image,
; starting at (0, 0) into T. The variable T is
; now dimensioned (512, 3, 512):
T = TVRD(0, 0, 512, 512, TRUE = 2)
; Read the maximum RGB value of each pixel into L:
L = TVRD(0, 0, 512, 512)
Using IDL TrueColor Displays

400 Chapter 14: Image Display Routines
Controlling the Device Cursor

The TVCRS function manipulates the cursor of the image display. Normally, the
cursor is disabled and is not visible. TVCRS with one argument allows the cursor to
be enabled or disabled. While TVCRS with two parameters enables the cursor and
places it on pixel location (x, y). TVCRS has the form

TVCRS[, ON_OFF]
TVCRS[, X, Y]

where the arguments and keywords are as follows:

ON_OFF

Specifies whether the cursor should be on or off. If present and nonzero, the cursor is
enabled. If ON_OFF is zero or no parameters are specified, the cursor is turned off.

X

The column to which the cursor will be set.

Y

The row to which the cursor will be set.

TVCRS also takes various keywords that affect how it positions the cursor. Notably,
the keywords DATA, DEVICE, and NORMAL specify the coordinate system. See
the entry for TVCRS in the IDL Reference Guide for details.
Controlling the Device Cursor Using IDL

Chapter 14: Image Display Routines 401
References

Foley, J.D., and A. Van Dam (1982), Fundamentals of Interactive Computer
Graphics, Addison-Wesley Publishing Company.
Using IDL References

402 Chapter 14: Image Display Routines
References Using IDL

Chapter 15:

Signal Processing
The following topics are covered in this chapter:
Overview . 404
Digital Signals . 405
Signal Analysis Transforms 408
The Fourier Transform 409
Interpreting FFT Results 410
Displaying FFT Results 411
Using Windows . 416
Aliasing . 420
FFT Algorithm Details 421
The Hilbert Transform 422

The Wavelet Transform 424
Convolution . 425
Correlation and Covariance 426
Digital Filtering . 427
Finite Impulse Response (FIR) Filters 428
FIR Filter Implementation 432
Infinite Impulse Response Filters 434
Routines for Signal Processing 438
References . 439
Using IDL 403

404 Chapter 15: Signal Processing
Overview

A signal, by definition, contains information. Any signal obtained from a physical
process also contains noise. It is often difficult or impossible to make sense of the
information contained in a digital signal by looking at it in its raw form—that is, as a
sequence of real values at discrete points in time. Signal analysis transforms offer
natural, meaningful, alternate representations of the information contained in a
signal.

This chapter describes IDL’s digital signal processing tools. Most of the procedures
and functions mentioned here work in two or more dimensions. For simplicity, only
one dimensional signals are used in the examples.

Running the Example Code

The examples in this chapter are all written to take advantage of IDL Direct Graphics.

The example code used in this chapter is part of the IDL distribution. All of the files
mentioned are located in the examples/doc subdirectory of the IDL distribution.
By default, this directory is part of IDL’s path; if you have not changed your path,
you will be able to run the examples as described here. See “!PATH” in Appendix D
of the IDL Reference Guide for information on IDL’s path.
Overview Using IDL

Chapter 15: Signal Processing 405
Digital Signals

A one-dimensional digital signal is a sequence of data, represented as a vector in an
array-oriented language like IDL. The term digital actually describes two different
properties:

1. The signal is defined only at discrete points in time as a result of sampling, or
because the instrument which measured the signal is inherently discrete-time
in nature. Usually, the time interval between measurements is constant.

2. The signal can take on only discrete values.

In this discussion, we assume that the signal is sampled at a time interval. The
concepts and techniques presented here apply equally well to any type of signal—the
independent variable may represent time, space, or any abstract quantity.

The following IDL commands create a simulated digital signal u(k), sampled at an
interval delt. This simulated signal will be used in examples throughout this
chapter. The simulated signal contains 1024 time samples, with a sampling interval
of 0.02 seconds. The signal contains a DC component and components at 2.8, 6.5,
and 11.0 cycles per second.

Enter the following commands at the IDL prompt to create the simulated signal:

N = 1024
delt = 0.02
u = -0.3 $

+ 1.0 * SIN(2 * !PI * 2.8 * delt * FINDGEN(N)) $
+ 1.0 * SIN(2 * !PI * 6.25 * delt * FINDGEN(N)) $
+ 1.0 * SIN(2 * !PI * 11.0 * delt * FINDGEN(N))

Alternately, you can run the following batch file to create the signal:

@sigprc01

See “Running the Example Code” on page 404 if IDL does not find the batch file.
Using IDL Digital Signals

406 Chapter 15: Signal Processing
Because the signal is digital, the conventional way to display it is with a histogram (or
step) plot. To create a histogram plot, set the PSYM keyword to the PLOT routine
equal to 10. A section of the example signal u(k) is plotted in the figure below.

Note
When the number of sampled data points is large, the steps in the histogram plot are
too small to see. In such cases you should not plot in histogram mode.

Enter the following commands at the IDL prompt to create the plot:

; Compute time data sequence u.
@sigprc01
; Vector of discrete times:
t = delt * FINDGEN(N)
; Beginning of plot time range:
t1 = 1.0
; End of plot time range:
t2 = 2.0
PLOT, t+delt/2, u, PSYM=10, XRANGE=[t1,t2], $

XTITLE='time in seconds', YTITLE='amplitude', $
TITLE='Portion of Sampled Time Signal u(k)'

Figure 15-1: Histogram plot of sample signal u(k).
Digital Signals Using IDL

Chapter 15: Signal Processing 407
Alternately, you can run the following batch file to create the plot:

@sigprc02

See “Running the Example Code” on page 404 if IDL does not find the batch file.
Using IDL Digital Signals

408 Chapter 15: Signal Processing
Signal Analysis Transforms

Most signals can be decomposed into a sum of discrete (usually sinusoidal) signal
components.The result of such decomposition is a frequency spectrum that can
uniquely identify the signal. IDL provides three transforms to decompose a signal
and prepare it for analysis: the Fourier transform, the Hilbert transform, and the
wavelet transform.
Signal Analysis Transforms Using IDL

Chapter 15: Signal Processing 409
The Fourier Transform

The Discrete Fourier Transform (DFT) is the most widely used method for
determining the frequency spectra of digital signals. This is due to the development
of an efficient algorithm for computing DFTs known as the Fast Fourier Transform
(FFT).

The discrete Fourier transform, v(m), of an N-element, one-dimensional function,
u(k), is defined as:

The inverse transform is defined as:

IDL implements the Fast Fourier Transform in the FFT function. You can find details
on using IDL’s FFT function in the following sections and in FFT in the IDL
Reference Guide.

v m() 1
N
---- u k()exp j2πmk N⁄–[]

k 0=

N 1–

∑=

u k() v m()exp j2πmk N⁄[]
m 0=

N 1–

∑=
Using IDL The Fourier Transform

410 Chapter 15: Signal Processing
Interpreting FFT Results

Just as the sampled time data represents the value of a signal at discrete points in
time, the result of a (forward) Fast Fourier Transform represents the spectrum of the
signal at discrete frequencies. These discrete frequencies are a function of the
frequency index (m), the number of samples collected (N), and the sampling interval
(δ):

The frequencies for which the FFT of a sampled signal are defined are sometimes
called frequency bins, which refers to the histogram-like nature of a discrete
spectrum. The width of each frequency bin is 1/(N*δ).

Due to the complex exponential in the definition of the DFT, the spectrum has a
cyclic dependence on the frequency index m. That is:

for p = any integer.

The frequency spectrum computed by IDL’s FFT function for a one-dimensional
time sequence is stored in a vector with indices running from 0 to N–1, which is also
a valid range for the frequency index m. However, the frequencies associated with
frequency indices greater than N/2 are above the Nyquist frequency and are not
physically meaningful for sampled signals. Many textbooks choose to define the
range of the frequency index m to be from – (N/2 – 1) to N/2 so that it is (nearly)
centered around zero. From the cyclic relation above with p = –1:

v(– (N/2 – 1)) = v(N/2 + 1 – N) = v(N/2 + 1)

v(– (N/2 – 2)) = v(N/2 + 2 – N) = v(N/2 + 2)

...

v(–2) = v(N – 2 – N) = v(N – 2)

v(–1) = v(N – 1 – N) = v(N – 1)

This index shift is easily accomplished in IDL with the SHIFT function (see the
following example).

f m() m
Nδ
-------=

v m pN+() v m()=
Interpreting FFT Results Using IDL

Chapter 15: Signal Processing 411
Displaying FFT Results

Depending on the application, there are many ways to display spectral data, the result
of the (forward) FFT function.

Real and Imaginary Components

The most direct way is to plot the real and imaginary parts of the spectrum as a
function of frequency index or as a function of the corresponding frequencies. The
following figure displays the real and imaginary parts of the spectrum v(m) of the
sampled signal u(k) for frequencies from –(N/2 – 1)/(N*δ) to (N/2)/(N*δ) cycles per
second.

Enter the following commands at the IDL prompt to create the plot:

;Compute time sequence data:
@sigprc01
; Compute spectrum v:
V = FFT(U)

Figure 15-2: Real and Imaginary parts of the sample signal.
Using IDL Displaying FFT Results

412 Chapter 15: Signal Processing
M = (INDGEN(N)-(N/2-1))
; Frequencies corresponding to m in cycles/second:
F = M / (N*delt)
; Set up for two plots in window:
!P.MULTI = [0, 1, 2]
PLOT, F, FLOAT(SHIFT(V,N/2-1)), $

YTITLE='real part of spectrum', $
XTITLE='Frequency in cycles / second', $
XRANGE=[-1,1]/(2*delt), XSTYLE=1, $
TITLE='Spectrum of u(k)'

PLOT, F, IMAGINARY(SHIFT(V,N/2-1)), $
YTITLE='imaginary part of spectrum', $
XTITLE='Frequency in cycles / second', $
XRANGE=[-1,1]/(2*delt), XSTYLE=1

!P.MULTI = 0

Alternately, you can run the following batch file to create the plot:

@sigprc03

See “Running the Example Code” on page 404 if IDL does not find the batch file.

IDL’s FFT function always returns a single- or double-precision complex array with
the same dimensions as the input argument. In the case of a forward FFT performed
on a one-dimensional vector of N real values, the result is an N-element vector of
complex quantities, which takes 2N real values to represent. It would seem that there
is twice as much information in the spectral data as there is in the time sequence data.
This is not the case. For a real valued time sequence, half of the information in the
frequency sequence is redundant. Specifically:

; 1 redundant value:
IMAGINARY(v(0)) = 0.0
; 1 redundant value:
IMAGINARY(v(N/2)) = 0.0

and

; for m=1 to N/2-1, N-2 redundant values:
v(N-m) = CONJ(v(m))

so that exactly N of the single- or double-precision values used to represent the
frequency spectrum are redundant. This redundancy is evident in the previous figure.
Notice that the real part of the spectrum is an even function (symmetric about zero),
and the imaginary part of the spectrum is an odd function (anti-symmetric about
zero). This is always the case for the spectra of real-valued time sequences.

Because of the redundancy in such spectra, it is common to display only half of the
spectrum of a real time sequence. That is, only the spectral values with frequency
indices from 0 to N/2, which correspond to frequencies from 0 to 1/(2*δ), the Nyquist
Displaying FFT Results Using IDL

Chapter 15: Signal Processing 413
frequency. This vector of positive frequencies is generated in IDL with the following
command:

; f = [0.0, 1.0/(N*delt), ... , 1.0/(2.0*delt)]
F = FINDGEN(N/2+1)/(N*delt)

Magnitude and Phase

It is also common to display the magnitude and phase of the spectrum, which have
physical significance, as opposed to the real and imaginary parts of the spectrum,
which do not have physical significance. Since there is a one-to-one correspondence
between a complex number and its magnitude and phase, no information is lost in the
transformation from a complex spectrum to its magnitude and phase. In IDL, the
magnitude is easily determined with the absolute value (ABS) function, and the phase
with the arc-tangent (ATAN) function. By one widely used convention, the
magnitude of the spectrum is plotted in decibels (dB) and the phase is plotted in
degrees, against frequency on a logarithmic scale. The magnitude and phase of our
sample signal are plotted in the figure below.

Enter the following commands at the IDL prompt to create the plot:

Figure 15-3: Magnitude and phase of the sample signal.
Using IDL Displaying FFT Results

414 Chapter 15: Signal Processing
; Compute time sequence data:
@sigprc01
; Compute spectrum v:
V = FFT(U)
; F = [0.0, 1.0/(N*delt), ... , 1.0/(2.0*delt)]:
F = FINDGEN(N/2+1) / (N*delt)
; Magnitude of first half of v:
mag = ABS(V(0:N/2))
; Phase of first half of v:
phi = ATAN(V(0:N/2))
; Set up for two plots in window:
!P.MULTI = [0, 1, 2]
; Create log plots of magnitude in dB and phase in degrees:
PLOT, F, 20*ALOG10(mag), YTITLE='Magnitude in dB', $

XTITLE='Frequency in cycles / second', /XLOG, $
XRANGE=[1.0,1.0/(2.0*delt)], XSTYLE=1, $
TITLE='Spectrum of u(k)'

PLOT, F, phi/!DTOR, YTITLE='Phase in degrees', $
YRANGE=[-180,180], YSTYLE=1, YTICKS=4, YMINOR=3, $
XTITLE='Frequency in cycles / second', /XLOG, $
XRANGE=[1.0,1.0/(2.0*delt)], XSTYLE=1

!P.MULTI = 0

Alternately, you can run the following batch file to create the plot:

@sigprc04

See “Running the Example Code” on page 404 if IDL does not find the batch file.

Using a logarithmic scale for the frequency axis has the advantage of spreading out
the lower frequencies, while higher frequencies are crowded together. Note that the
spectrum at zero frequency (DC) is lost completely on a semi-logarithmic plot.

The previous figure shows the strong frequency components at 2.8, 6.25, and 11.0
cycles/second as peaks in the magnitude plot, and as discontinuities in the phase plot.
The magnitude peak at 6.25 cycles/second is a narrow spike, as would be expected
from the pure sine wave component at that frequency in the time data sequence. The
peaks at 2.8 and 11.0 cycles/second are more spread out, due to an effect known as
smearing or leakage. This effect is a direct result of the definition of the DFT and is
not due to any inaccuracy in the FFT. Smearing is reduced by increasing the length of
the time sequence, or by choosing a sample size which includes an integral number of
cycles of the frequency component of interest. There are an integral number of cycles
of the 6.25 cycles/second component in the time sequence used for this example,
which is why the peak at that frequency is sharper.

The apparent discontinuity in the phase plot at around 7.45 cycles/second is an
anomaly known as phase wrapping. It is a result of resolving the phase from the real
Displaying FFT Results Using IDL

Chapter 15: Signal Processing 415
and imaginary parts of the spectrum with the arctangent function (ATAN), which
returns principal values between –180 and +180 degrees.

Power Spectrum

Finally, for many applications, the phase information is not useful. For these, it is
often customary to plot the power spectrum, which is the square of the magnitude of
the complex spectrum. The resulting plot is shown in the figure below.

Enter the following commands at the IDL prompt to create the plot:

; Compute time sequence data.
@sigprc01
; Compute spectrum v:
V = FFT(U)
; F = [0.0, 1.0/(N*delt), ... , 1.0/(2.0*delt)]:
F = FINDGEN(N/2+1) / (N*delt)
; Create log-log plot of power spectrum:
PLOT, F, ABS(V(0:N/2))^2, YTITLE='Power Spectrum of u(k)', $

/YLOG, XTITLE='Frequency in cycles / second', /XLOG, $
XRANGE=[1.0,1.0/(2.0*delt)], XSTYLE=1

Alternately, you can run the following batch file to create the plot:

@sigprc05

See “Running the Example Code” on page 404 if IDL does not find the batch file.

Figure 15-4: Power spectrum of the sample signal.
Using IDL Displaying FFT Results

416 Chapter 15: Signal Processing
Using Windows

The smearing or leakage effect mentioned previously is a direct consequence of the
definition of the Discrete Fourier Transform and of the fact that a finite time sample
of a signal often does not include an integral number of some of the frequency
components in the signal. The effect of this truncation can be reduced by increasing
the length of the time sequence or by employing a windowing algorithm. IDL’s
HANNING function computes two windows which are widely used in signal
processing: the Hanning window and the Hamming window.

Hanning Window

The Hanning window is defined as:

The resulting vector is multiplied element-by-element with the sampled signal vector
before applying the FFT. For example, the following IDL command computes the
Hanning window and then applies the FFT function:

v_n = FFT(HANNING(N)*U)

w k() 1
2
--- 1

2πk
N 1–

 cos–
 =
Using Windows Using IDL

Chapter 15: Signal Processing 417
The power spectrum of the Hanning windowed signal shows the mitigation of the
truncation effect (see the figure below).

Enter the following commands at the IDL prompt to create the plot:

; Compute time sequence data:
@sigprc01
; F = [0.0, 1.0/(N*delt), ... , 1.0/(2.0*delt)]:
F = FINDGEN(N/2+1) / (N*delt)
v_n = FFT(HANNING(N)*U)
;Create a log-log plot of power spectrum:
PLOT, F, ABS(v_n(0:N/2))^2, YTITLE='Power Spectrum', $

/YLOG, YRANGE=[1.0e-8,1.0], YSTYLE=1, YMARGIN=[4,4], $
XTITLE='Frequency in cycles / second', /XLOG, $
XRANGE=[1.0,1.0/(2.0*delt)], XSTYLE=1, $
TITLE=’Power Spectrum of u(k) with Hanning Window ' $
+'(solid)!Cand without Window (dashed)'

; Overplot without window:
OPLOT, F, ABS((FFT(U))(0:N/2))^2, LINESTYLE=2

Alternately, you can run the following batch file to create the plot:

@sigprc06

See “Running the Example Code” on page 404 if IDL does not find the batch file.

Figure 15-5: Power spectrum of the sample signal after applying a Hanning
window.
Using IDL Using Windows

418 Chapter 15: Signal Processing
Hamming Window

The Hamming window is defined as:

The resulting vector is multiplied element-by-element with the sampled signal vector
before applying the FFT. For example, the following IDL command computes the
Hamming window and then applies the FFT function:

v_m = FFT(HANNING(N, ALPHA=0.56)*U)

The power spectrum of the Hamming windowed signal shows the mitigation of the
truncation effect (see the figure below).

Enter the following commands at the IDL prompt to create the plot:

; Compute time sequence data.
@sigprc01
; F = [0.0, 1.0/(N*delt), ... , 1.0/(2.0*delt)]:
F = FINDGEN(N/2+1) / (N*delt)
v_m = FFT(HANNING(N, ALPHA=0.54)*U)
; Create log-log plot of power spectrum:
PLOT, F, ABS(v_m(0:N/2))^2, YTITLE='Power Spectrum', $

/YLOG, YRANGE=[1.0e-8,1.0], YSTYLE=1, YMARGIN=[4,4], $
XTITLE='Frequency in cycles / second', $

Figure 15-6: Power spectrum of the sample signal after applying a Hamming
window.

w k() 0.54 0.46
2πk

N 1–

 cos–=
Using Windows Using IDL

Chapter 15: Signal Processing 419
/XLOG, XRANGE=[1.0,1.0/(2.0*delt)], XSTYLE=1, $
TITLE='Power Spectrum of u(k) with Hamming Window'
+'!C(solid) and without Window (dashed)'

; Overplot without window:
OPLOT, F, ABS((FFT(U))(0:N/2))^2, LINESTYLE=2

Alternately, you can run the following batch file to create the plot:

@sigprc07

See “Running the Example Code” on page 404 if IDL does not find the batch file.
Using IDL Using Windows

420 Chapter 15: Signal Processing
Aliasing

Aliasing is a well known phenomenon in sampled data analysis. It occurs when the
signal being sampled has components at frequencies higher than the Nyquist
frequency, which is equal to half the sampling frequency. Aliasing is a consequence
of the fact that after sampling, every periodic signal at a frequency greater than the
Nyquist frequency looks exactly like some other periodic signal at a frequency less
than the Nyquist frequency.

For example, suppose we add a 30 cycle per second periodic component to our
sampled data sequence u(t). The power spectrum of the augmented signal is shown in
the figure below.

Because the frequency of the new component is above the Nyquist frequency of 25
cycles per second (25 = 1/(2*delt)), the power spectrum shows the contribution of the
new component as an alias at 20 cycles per second.

To prevent aliasing, frequency components of a signal above the Nyquist frequency
must be removed before sampling.

You can run the following batch file to create the plot:

@sigprc08

See “Running the Example Code” on page 404 if IDL does not find the batch file.

Figure 15-7: Power spectrum of the sample signal after adding a 30 cycles per
second component.
Aliasing Using IDL

Chapter 15: Signal Processing 421
FFT Algorithm Details

IDL’s implementation of the fast Fourier transform is based on the Cooley-Tukey
algorithm. The algorithm takes advantage of the fact that the discrete Fourier
transform (DFT) of a discrete time series with an even number of points is equal to
the sum of two DFTs, each half the length of the original. For data lengths that are a
power of 2, this algorithm is used recursively, each iteration subdividing the data into
smaller sets to be transformed. In the IDL FFT, this method is also extended to
powers of 3 and 5. If the number of points in the original time series does not contain
powers of 2, 3, or 5, the original data are still subdivided into data sets with lengths
equal to the prime factors of N. The resulting subdivisions with lengths equal to
prime numbers other than 2, 3, or 5 must be transformed using a slow DFT. The slow
DFT is mathematically equivalent to the FFT, but requires N2 operations instead of
Nlog2(N).

This implementation means that the FFT function is fastest when the number of
points is rich in powers of 2, 3, or 5. The slowest case is when the number of samples
is a large prime number. In this case, a significant improvement in efficiency can be
gained by padding the data set with zeros to increase the number of data points to a
power of 2, 3, or 5.

For real input data of even lengths, the FFT algorithm also takes advantage of the fact
that the real array can be packed into a complex array of half the length, and
unpacked at the end, thus cutting the running time in half.
Using IDL FFT Algorithm Details

422 Chapter 15: Signal Processing
The Hilbert Transform

The Hilbert transform is a time-domain to time-domain transformation which shifts
the phase of a signal by 90 degrees. Positive frequency components are shifted by
+90 degrees, and negative frequency components are shifted by – 90 degrees.
Applying a Hilbert transform to a signal twice in succession shifts the phases of all of
the components by 180 degrees, and so produces the negative of the original signal.
IDL’s HILBERT function accepts both real and complex valued signals as inputs; the
imaginary part of the result is zero for real inputs.

In optics and signal analysis, the Hilbert transform of the time signal r(t) is known as
the quadrature function of r(t), which is used to form a complex function known as
the analytic signal. The analytic signal is defined as:

where j is the square root of –1 and H is the Hilbert function.

The projection of the analytic signal onto the plane defined by the real axis and the
time axis is the original signal. The projection onto the plane defined by the
imaginary axis and the time axis is the Hilbert transform of the original signal.

r̂ t() r t() jH r t()()–=
The Hilbert Transform Using IDL

Chapter 15: Signal Processing 423
The following example plots the complex analytic signal of a periodic time signal
with a slowly varying amplitude.

Enter the following commands at the IDL prompt to create the plot:

; Number of time samples in data set:
N = 1024
; Sampling interval in seconds:
delt = 0.02
; Vector of discrete times:
T = delt * FINDGEN(N)
f1 = 5.0 / ((n-1)*delt)
f2 = 0.5 / ((n-1)*delt)
R = SIN(2*!PI*f1*T) * SIN(2*!PI*f2*T)
PLOT_3DBOX, T, R, -FLOAT(HILBERT(R)), $

AX=40, AZ=15, XTICKS=5, XCHARSIZE=2, $
XTITLE = 'time in seconds', YTICKS=2, YCHARSIZE=2, $
YTITLE = 'real', YMARGIN=[4,8], ZTICKS=2, ZCHARSIZE=2, $
ZTITLE = 'imaginary'

XYOUTS, 0.5, 0.95, /NORMAL, ALIGNMENT=0.5, SIZE=1.5, $
'Ana;lytic Signal for r(t) Using Hilbert Transform'

Alternately, you can run the following batch file to create the plot:

@sigprc09

See “Running the Example Code” on page 404 if IDL does not find the batch file.

Figure 15-8: Analytic signal for r(t).
Using IDL The Hilbert Transform

424 Chapter 15: Signal Processing
The Wavelet Transform

Like the discrete Fourier transform, the discrete wavelet transform (DWT) is a linear
operation that defines a forward and inverse relationship between the time-domain
and the frequency-domain, also called the wavelet domain. This relationship is
expressed through the use of basis functions. In the case of the DFT, trigonometric
sines and cosines of varying angles are used. In the case of the DWT, the basis
functions are more complicated and usually called mother functions or wavelets.
Also like the DFT, the DWT is orthogonal, making many operations computationally
efficient. For example, the inverse wavelet transform, when viewed as a matrix
operator, is simply the transpose of the forward transform.

Most of the usefulness of wavelets relies on the fact that wavelet transforms can
usefully be severely truncated—that is, they can be effectively turned into sparse
expressions. This property is a result of the simultaneous compact representation of
the wavelet basis functions in the time and frequency domains. See WTN in the IDL
Reference Guide for an example using the wavelet transform.
The Wavelet Transform Using IDL

Chapter 15: Signal Processing 425
Convolution

Discrete convolution in digital signal processing is used (among other things) to
smooth sampled signals using a weighted moving average. It also has many
applications outside of signal processing.

IDL has two functions for doing discrete convolution: BLK_CON and CONVOL.
BLK_CON takes advantage of the fact that the convolution of two signals is the
Inverse Fourier transform of the product of the Fourier transforms of the two signals.
BLK_CON is faster than CONVOL, but not as flexible. Among the many
applications for discrete convolution is the implementation of digital filters. See the
example in the “Finite Impulse Response (FIR) Filters” on page 428.
Using IDL Convolution

426 Chapter 15: Signal Processing
Correlation and Covariance

Correlation and covariance (which is correlation with any non-zero mean values of
the signals removed beforehand) are closely related to convolution. They are useful
in analyzing signals with random components. Autocorrelation and autocovariance of
signals are computed with the A_CORRELATE function, and crosscorrelation and
crosscovariance are computed with the C_CORRELATE function. See “Time-Series
Analysis” on page 487 for details.
Correlation and Covariance Using IDL

Chapter 15: Signal Processing 427
Digital Filtering

Digital filters can be implemented on a computer to remove unwanted frequency
components (noise) from a sampled signal. Two broad classes of filters are Finite
Impulse Response (FIR) or Moving Average (MA) filters, and Infinite Impulse
Response (IIR) or AutoRegressive Moving Average (ARMA) filters. Both of these
classes of filters are described below.
Using IDL Digital Filtering

428 Chapter 15: Signal Processing
Finite Impulse Response (FIR) Filters

Digital filters that have an impulse response which reaches zero in a finite number of
steps are (appropriately enough) called Finite Impulse Response (FIR) filters. An FIR
filter can be implemented non-recursively by convolving its impulse response (which
is often used to define an FIR filter) with the time data sequence it is filtering. FIR
filters are somewhat simpler than Infinite Impulse Response (IIR) filters, which
contain one or more feedback terms and must be implemented with difference
equations or some other recursive technique.

IDL’s DIGITAL_FILTER function computes the impulse response of an FIR filter
based on Kaiser’s window, which in turn is based on the modified Bessel function.
The Kaiser filter is “nearly optimum in the sense of having the largest energy in the
mainlobe for a given peak sidelobe level” [Jackson, Leland B., Digital Filters and
Signal Processing]. The DIGITAL_FILTER function constructs lowpass, highpass,
bandpass, or bandstop filters.

The figure below plots a bandstop filter which suppresses frequencies between 7
cycles per second and 15 cycles per second for data sampled every 0.02 seconds.

Enter the following commands at the IDL prompt to create the plot:

; Sampling period in seconds:
delt = 0.02
; Frequencies above f_low will be passed:

Figure 15-9: Bandstop FIR filter.
Finite Impulse Response (FIR) Filters Using IDL

Chapter 15: Signal Processing 429
f_low = 15.
; Frequencies below f_high will be passed:
f_high = 7.
; Ripple amplitude will be less than -50 dB:
a_ripple = 50.
; The order of the filter:
nterms = 40
; Compute the impulse response = the filter coefficients:
bs_ir_k = DIGITAL_FILTER(f_low*2*delt, f_high*2*delt, $

a_ripple, nterms)
; The frequency response of the filter is the FFT of its
; impulse response:
nfilt = N_ELEMENTS(bs_ir_k)
; where nfilt = number of points in impulse response.
; Scale frequency response by number of points:
bs_fr_k = FFT(bs_ir_k) * nfilt
; Create a log plot of magnitude in decibels:
f_filt = FINDGEN(nfilt/2+1) / (nfilt*delt)
; Magnitude of bandstop filter transfer function:
mag = ABS(bs_fr_k(0:nfilt/2))
PLOT, f_filt, 20*ALOG10(mag), YTITLE='Magnitude in dB', $

XTITLE='Frequency in cycles / second', /XLOG, $
XRANGE=[1.0,1.0/(2.0*delt)], XSTYLE=1, $
TITLE='Frequency Response for Bandstop!CFIR Filter (Kaiser)'

Alternately, you can run the following batch file to create the plot:

@sigprc10

See “Running the Example Code” on page 404 if IDL does not find the batch file.

Other FIR filters can be designed based on the Hanning and Hamming windows (see
“Using Windows” on page 416), or any other user-defined window function. The
design procedure is simple:

1. Compute the impulse response of an ideal filter using the inverse FFT

2. Apply a window to the impulse response. The modified impulse response
defines the FIR filter.
Using IDL Finite Impulse Response (FIR) Filters

430 Chapter 15: Signal Processing
The figure below shows the plot using the same sampling period and frequency
cutoffs as above, and the corresponding ideal filter is constructed in the frequency
domain using the Hanning window.

Enter the following commands at the IDL prompt to create the plot:

; Sampling period in seconds:
delt = 0.02
; Frequencies above f_low will be passed:
f_low = 15.
; Frequencies below f_high will be passed:
f_high = 7.
; The length of the filter:
nfilt = 81
f_filt = FINDGEN(nfilt/2+1) / (nfilt*delt)
; Pass frequencies greater than f_low and less than f_high:
ideal_fr = (f_filt GT f_low) OR (f_filt LT F_high)
; Convert from byte to floating point:
ideal_fr = FLOAT(ideal_fr)
; Replicate to obtain values for negative frequencies:
ideal_fr = [ideal_fr, REVERSE(ideal_fr[1:*])]
; Now use an inverse FFT to get the impulse response
; of the ideal filter:
ideal_ir = FLOAT(FFT(ideal_fr, /INVERSE))
; Ideal_fr is an even function, so the result is real.
; Scale by the # of points:
ideal_ir = ideal_ir / nfilt
; Shift it before applying the window:
ideal_ir = SHIFT(ideal_ir, nfilt/2)

Figure 15-10: Bandstop filter using Hanning Window.
Finite Impulse Response (FIR) Filters Using IDL

Chapter 15: Signal Processing 431
; Apply a Hanning window to the shifted ideal impulse response.
; These are the coefficients of the filter:
bs_ir_n = ideal_ir*HANNING(nfilt)
; The frequency response of the filter is the FFT
; of its impulse response. Scale by the number of points:
bs_fr_n = FFT(bs_ir_n) * nfilt
; Create a log plot of magnitude in decibels
; Magnitude of Hanning bandstop filter transfer function:
mag = ABS(bs_fr_n(0:nfilt/2))
PLOT, f_filt, 20*ALOG10(mag), YTITLE='Magnitude in dB', $

XTITLE='Frequency in cycles / second', /XLOG, $
XRANGE=[1.0,1.0/(2.0*delt)], XSTYLE=1, $
TITLE='Frequency Response for Bandstop!CFIR Filter (Hanning)'

Alternately, you can run the following batch file to create the plot:

@sigprc11

See “Running the Example Code” on page 404 if IDL does not find the batch file.
Using IDL Finite Impulse Response (FIR) Filters

432 Chapter 15: Signal Processing
FIR Filter Implementation

The simplest FIR filter to apply to a signal is the rectangular or boxcar filter, which is
implemented with IDL’s SMOOTH function, or the closely related MEDIAN
function.

Applying other FIR filters to signals is straightforward since the filter is non-
recursive. The filtered signal is simply the convolution of the impulse response of the
filter with the original signal. The impulse response of the filter is computed with the
DIGITAL_FILTER function or by the procedure in the previous section.

IDL’s BLK_CON function provides a simple and efficient way to convolve a filter
with a signal. Using u(k) from the previous example and the bandstop filter created
above creates the plot shown in the figure below.

The frequency response of the filtered signal shows that the frequency component at
11.0 cycles / second has been filtered out, while the frequency components at 2.8 and
6.25 cycles / second, as well as the DC component, have been passed by the filter.

Enter the following commands at the IDL prompt to create the plot:

; Compute time data sequence u:
@sigprc01
; Compute the Kaiser filter coefficients
; with the sampling period in seconds:
delt = 0.02

Figure 15-11: Digital signal before and after filtering.
FIR Filter Implementation Using IDL

Chapter 15: Signal Processing 433
; Frequencies above f_low will be passed:
f_low = 15.
; Frequencies below f_high will be passed:
f_high = 7.
; Ripple amplitude will be less than -50 dB:
a_ripple = 50.
; The order of the filter:
nterms = 40
; Compute the impulse response = the filter coefficients:
bs_ir_k = DIGITAL_FILTER(f_low*2*delt, f_high*2*delt, $

a_ripple, nterms)
; Convolve the Kaiser filter with the signal:
u_filt = BLK_CON(bs_ir_k, u)
; Spectrum of original signal:
v = FFT(u)
; Spectrum of the filtered signal:
v_filt = FFT(u_filt)
; Create a log-log plot of power spectra.
; F = [0.0, 1.0/(N*delt), ... , 1.0/(2.0*delt)]
F = FINDGEN(N/2+1) / (N*delt)
PLOT, F, ABS(v(0:N/2))^2, YTITLE='Power Spectrum', /YLOG, $

XTITLE='Frequency in cycles / second', /XLOG, $
XRANGE=[1.0,1.0/(2.0*delt)], XSTYLE=1, $
TITLE='Spectrum of u(k) Before (solid) and!CAfter $
(dashed) Digital Filtering'

Alternately, you can run the following batch file to create the plot:

@sigprc12

See “Running the Example Code” on page 404 if IDL does not find the batch file.
Using IDL FIR Filter Implementation

434 Chapter 15: Signal Processing
Infinite Impulse Response Filters

Digital filters which must be implemented recursively are called Infinite Impulse
Response (IIR) filters because, theoretically, the response of these filters to an
impulse never settles to zero. In practice, the impulse response of many IIR filters
approaches zero asymptotically, and may actually reach zero in a finite number of
samples due to the finite word length of digital computers.

One method of designing digital filters starts with the Laplace transform
representation of an analog filter with the required frequency response. For example,
the Laplace transform representation (or continuous transfer function) of a second
order notch filter with the notch at f0 cycles per second is:

where s is the Laplace transform variable. Then the continuous transfer function is
converted to the equivalent discrete transfer function using one of several techniques.
One of these is the bilinear (Tustin) transform, where

(2/δ)*(z-1)/(z+1)

is substituted for the Laplace transform variable s. In this expression, z is the unit
delay operator.

For the notch filter above, the bilinear transformation yields the following discrete
transfer function:

where c = (1 – π*f0*δ) / (1 + π*f0*δ).

Enter the following IDL statements to compute the coefficients of the discrete
transfer function:

y s()
u s()

f0

2π
------ s

2
+

1 2s
f0

2π

 s
2

+ +

--=

y z()
u z()

1 c
2

+
2

-------------- 2cz– 1 c
2

+
2

--------------z
2

+

c
2

2cz– z
2

+()
---=
Infinite Impulse Response Filters Using IDL

Chapter 15: Signal Processing 435
delt = 0.02
; Notch frequency in cycles per second:
f0 = 6.5
c = (1.0-!PI*F0*delt) / (1.0+!PI*F0*delt)
b = [(1+c^2)/2, -2*c, (1+c^2)/2]
a = [c^2, -2*c, 1]

Alternately, you can run the following batch file to compute the coefficients:

@sigprc13

See “Running the Example Code” on page 404 if IDL does not find the batch file.

IIR Filter Implementation

Since an Infinite Impulse Response filter contains feedback loops, its output at every
time step depends on previous outputs, and the filter must be implemented
recursively with difference equations. The discrete transfer function

is implemented with the difference equation

An IIR filter is stable if the absolute values of the roots of the denominator of the
discrete transfer function a(z) are all less than one. The impulse response of a stable
IIR filter approaches zero as the time index k approaches infinity. The frequency
response function of a stable IIR filter is the Discrete Fourier Transform of the filter’s
impulse response.

y z()
b0 b1z … bnbz

nb
+ + +

a0 a1z … anaz
nb

+ + +

u z()=

y k()
b0u k nb–() b1u k nb– 1+() … bnbu k() a0y k na–()– a1y k na– 1+() …– ana 1– y k 1–()––+ + +()

ana
--=
Using IDL Infinite Impulse Response Filters

436 Chapter 15: Signal Processing
The figure below plots the impulse and frequency response functions of the notch
filter defined above using recursive difference equations.

Enter the following commands at the IDL prompt to create the plot:

; Load the coefficients for the notch filter:
@sigprc13
; Degree of denominator polynomial:
na = N_ELEMENTS(A)-1
; Degree of numerator polynomial:
nb = N_ELEMENTS(B)-1
N = 1024L
; Create an impulse U:
U = FLTARR(N)
U[0] = FLOAT(N)
Y = FLTARR(N)
Y[0] = B[2]*U[0] / A[na]
; Recursively compute the filtered signal:
FOR K = 1, N-1 DO $

Y(K) = (TOTAL(B[nb-K>0:nb]*U[K-nb>0:K]) $
- TOTAL(A[na-K>0:na-1]*Y[K-na>0:K-1])) / A[na]

; Compute spectrum V:
V = FFT(Y)

Figure 15-12: Impulse and frequency response of a notch filter.
Infinite Impulse Response Filters Using IDL

Chapter 15: Signal Processing 437
; F = [0.0, 1.0/(N*delt), ... , 1.0/(2.0*delt)]
F = FINDGEN(N/2+1) / (N*delt)
; Magnitude of first half of V:
mag = ABS(V(0:N/2))
; Phase of first half of V:
phi = ATAN(V(0:N/2))
; Create log plots of magnitude in decibels and phase in degrees.
; Set up for two plots in window:
!P.MULTI = [0, 1, 2]
PLOT, F, 20*ALOG10(mag), YTITLE='Magnitude in dB', $

XTITLE='Frequency in cycles / second', /XLOG, $
XRANGE=[1.0,1.0/(2.0*delt)], XSTYLE=1, $
TITLE='Frequency Response Function of b(z)/a(z)'

PLOT, F, phi/!DTOR, YTITLE='Phase in degrees', $
YRANGE=[-180,180], YSTYLE=1, YTICKS=4, YMINOR=3, $
XTITLE='Frequency in cycles / second', /XLOG, $
XRANGE=[1.0,1.0/(2.0*delt)], XSTYLE=1

!P.MULTI = 0

Note
Because the impulse response approaches zero, IDL may warn of floating-point
underflow errors. This is an expected consequence of the digital implementation of
an Infinite Impulse Response filter.

Alternately, you can run the following batch file to create the plot:

@sigprc14

See “Running the Example Code” on page 404 if IDL does not find the batch file.

The same code could be used to filter any input sequence u(k).
Using IDL Infinite Impulse Response Filters

438 Chapter 15: Signal Processing
Routines for Signal Processing

Below is a brief description of IDL routines for signal processing. More detailed
information is available in the IDL Reference Guide.

Routine Description

A_CORRELATE Computes autocorrelation.

BLK_CON Convolves input signal with impulse-response sequence.

C_CORRELATE Computes cross correlation.

CONVOL Convolves two vectors or arrays.

CORRELATE Computes the linear Pearson correlation.

DIGITAL_FILTER Calculates coefficients of a non-recursive, digital filter.

FFT Returns the Fast Fourier Transform of an array.

HANNING Creates Hanning and Hamming windows.

HILBERT Constructs a Hilbert transform.

INTERPOL Performs linear interpolation on vectors.

M_CORRELATE Computes multiple correlation coefficient.

MEDIAN Returns the median value of an array or applies a median
filter.

P_CORRELATE Computes partial correlation coefficient.

R_CORRELATE Computes rank correlation.

SAVGOL Returns coefficients of Savitzky-Golay smoothing filter.

SMOOTH Smooths with a boxcar average.

TS_COEF Computes the coefficients for autoregressive time-series.

TS_DIFF Computes the forward differences of a time-series.

TS_FCAST Computes future or past values of a stationary time-series.

TS_SMOOTH Computes moving averages of a time-series.

WTN Returns wavelet transform of the input array.

Table 15-1: Signal Processing Routines in IDL
Routines for Signal Processing Using IDL

Chapter 15: Signal Processing 439
References

Bracewell, Ronald N., The Fourier Transform and Its Applications, New York:
McGraw-Hill, 1978. ISBN 0-07-007013-X

Chen, Chi-Tsong, One-Dimensional Digital Signal Processing, New York: Marcel
Dekker, Inc., 1979. ISBN 0-8247-6877-9

Jackson, Leland B., Digital Filters and Signal Processing, Boston: Kluwer Academic
Publishers, 1986. ISBN 0-89838-174-6

Mayeda, Wataru, Digital Signal Processing, Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1993. ISBN 0-13-211301-5

Morgera, Salvatore D. and Krishna, Hari, Digital Signal Processing: Applications to
Communications and Algebraic Coding Theories, Boston: Academic Press, 1989.
ISBN 0-12-506995-2

Oppenheim, Alan V. and Schafer, Ronald W., Discrete-time signal processing,
Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN 0-13-216292-X

Peled, Abraham and Liu, Bede, Digital Signal Processing, New York: John Wiley &
Sons, Inc., 1976. ISBN 0-471-01941-0

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Proakis, John G. and Manolakis, Dimitris G., Digital Signal Processing: Principles,
Algorithms, and Applications, New York: Macmillan Publishing Company, 1992.
ISBN 0-02-396815-X

Rabiner, Lawrence R. and Gold, Bernard, Theory and application of digital signal
processing, Englewood Cliffs, NJ: Prentice-Hall, 1975. ISBN 0-139-14101-4

Strang, Gilbert and Nguyen, Truong, Wavelets and Filter Banks, Wellesley, MA:
Wellesley-Cambridge Press, 1996. ISBN 0-961-40887-1
Using IDL References

440 Chapter 15: Signal Processing
References Using IDL

Chapter 16:

Mathematics
The following topics are covered in this chapter:
IDL’s Numerical Recipes Functions 443
Accuracy & Floating-Point Operations . . . 444
Arrays and Matrices 446
Correlation Analysis 450
Curve and Surface Fitting 454
Eigenvalues and Eigenvectors 457
Gridding and Interpolation 463
Hypothesis Testing 465

Integration . 468
Linear Systems . 473
Nonlinear Equations 480
Optimization . 482
Sparse Arrays . 484
Time-Series Analysis 487
Multivariate Analysis 490
References . 496
Using IDL 441

442 Chapter 16: Mathematics
This chapter documentsIDL’s mathematics and statistics procedures and functions.
These include Numerical Recipes™ algorithms published in Numerical Recipes in C:
The Art of Scientific Computing (Second Edition).

This chapter also includes introductory discussions of the following topics and an
overview of the way IDL handles the particular problems involved:

• Arrays and Matrices

• Correlation Analysis

• Curve and Surface Fitting

• Eigenvalues and Eigenvectors

• Gridding and Interpolation

• Hypothesis Testing

• Integration

• Linear Systems

• Nonlinear Equations

• Optimization

• Sparse Arrays

• Time Series Analysis

References are provided at the end of each section for a more detailed description and
understanding of the topic.

Research Systems, Inc. is extremely interested in the accuracy of its algorithms. Bug
reports, documentation errors and suggestions for future mathematics and statistics
enhancements can be sent to Research Systems via:

Internet: support@ResearchSystems.com

Fax: (303) 786-9909
Using IDL

mailto:support@ResearchSystems.com

Chapter 16: Mathematics 443
IDL’s Numerical Recipes Functions

IDL includes a number of routines based on algorithms published in Numerical
Recipes in C: The Art of Scientific Computing (Second Edition). Routines derived
from Numerical Recipes are noted as such in the IDL Reference Guide and in the IDL
Online Help.

In IDL versions up to and including IDL version 3.6, mathematics functions based on
Numerical Recipes algorithms required that input be in column-major format. This is
no longer the case. Routines based on Numerical Recipes algorithms have been
reworked and renamed, so that all IDL functions now expect input arrays to be in
row-major format (composed of row vectors).

Note
To maintain compatibility with IDL programs based on earlier versions, the old
routines (using the older input convention) are still available. No alterations need be
made to existing code as a result of this change in IDL. We recommend that all new
IDL programs take advantage of the new names and input convention.
Using IDL IDL’s Numerical Recipes Functions

444 Chapter 16: Mathematics
Accuracy & Floating-Point Operations

In a computer, real numbers are represented with finite precision. While in most
cases it is safe to assume that the result of an arithmetical operation done on your
computer is correct, it is important to remember that this finite-precision
representation leads to unavoidable errors, especially when floating-point numbers,
which are digital approximations to real numbers, are involved.

To understand why floating-point numbers are inherently inaccurate, consider the
following:

• Floating-point numbers must be made to fit in a space (a string of binary digits
in a computer’s memory register) that can only hold an integer and a scaling
factor.

• Floating-point numbers are represented by strings of a limited number of bits,
but represent numbers much larger or smaller than that number of digits can be
made to express.

In other words, floating-point values are finite-precision approximations of infinitely
precise numbers.

Roundoff Error

When working with floating-point arithmetic, it is helpful to consider the quantity
known as the machine accuracy or the floating-point accuracy of your particular
computer. This is the smallest number that, when added to 1.0, produces a floating-
point result that is different from 1.0.

A useful way of thinking about machine accuracy is to consider it to be the fractional
accuracy to which floating-point numbers are represented. In other words, the
machine accuracy roughly corresponds to a change of the least significant bit of the
floating-point mantissa—precisely what can happen if a number with more
significant digits than fit in the floating-point mantissa is rounded to fit the space
available. Generally speaking, every floating-point arithmetic operation introduces an
error at least equal to the machine accuracy into the result. This error is known as
roundoff error.

Roundoff errors are cumulative. Depending on the algorithm you are using, a
calculation involving n arithmetic operations might have a total roundoff error
between SQRT(n) times the machine accuracy and n times the machine accuracy.
Accuracy & Floating-Point Operations Using IDL

Chapter 16: Mathematics 445
Note that the machine accuracy is not the same as the smallest floating-point number
your computer can represent. To find these and other machine-dependent quantities
for your own computer, see MACHAR in the IDL Reference Guide.

Truncation Error

Another type of error is also present in some numerical algorithms. Truncation error
is the error introduced by the process of numerically approximating a continuous
function by evaluating it at a finite number of discrete points. Often, accuracy can be
increased (again at some cost of computation time) by increasing the number of
discrete points evaluated.

For example, consider the process of calculating

Obviously, the answer becomes more accurate as n approaches infinity. When
performing the actual computation, however, a cutoff value must be specified for n.
Increasing n reduces truncation error at the expense of computational effort.

Several IDL routines allow you to specify cutoff values in such cases (see, for
example, INT_2D of the IDL Reference Guide). When writing your own routines in
IDL, it is important to consider this trade-off between accuracy and computational
time.

 Routines for Mathematical Error Assessment

Below is a brief description of IDL routines for checking math error status and
machine characteristics. More detailed information is available in the IDL Reference
Guide.

CHECK_MATH Returns and clears accumulated math error status.

FINITE Returns True if its argument is finite.

MACHAR Determines and returns machine-specific parameters affecting
floating-point arithmetic.

Table 16-1: Mathematical Error Assessment Routines in IDL

ex 1 x x2

2!
----- x3

3!
----- … xn

n!
-----+ + + + +=
Using IDL Accuracy & Floating-Point Operations

446 Chapter 16: Mathematics
Arrays and Matrices

In a computer, a multidimensional data set can be indexed in one of two ways. It can
be indexed in column-major format, which means that the linear order of the data
elements proceeds from the first element in the first column through the last element
in the first column before beginning on the second column, and so on. This is the
format used by C and Pascal to index data.

Alternatively, data can be indexed in row-major format, meaning that the linear order
of the data elements proceeds from the first element of the first row through the last
element of the first row before beginning on the second row, and so on. This is the
format used by FORTRAN, and is traditionally associated with image processing,
because it keeps all the elements of a single image scan line together. Because IDL’s
origins are in image processing, it indexes data in row-major format.

Note
Many computer languages, such as C, Pascal, and Visual Basic, index
2-dimensional arrays in (row, column) order. IDL indexes arrays in (column, row)
order.

For example, a two-by-two array A that looks like this on paper:

would be indexed: A0,0, A1,0, A0,1, A1,1 in IDL.

Remembering the difference between these two indexing schemes is crucial for using
IDL’s matrix and array functions effectively. To specify an individual element of a
column-major array, you specify the row index first, then the column index. To
specify an individual element of a row-major array, you specify the column index
first, then the row index. Since many numerical algorithms assume data is indexed
(row, column), while IDL indexes it (column, row), it is important to keep this
distinction in mind.

IDL always allocates and references data in row-major format. In order to work with
data in column-major format, use IDL’s TRANSPOSE function to interchange the
order of the indices.

A0 0, A1 0,

A0 1, A1 1,
Arrays and Matrices Using IDL

Chapter 16: Mathematics 447
Example

Suppose you have an array A of data with each element set to the value of its one-
dimensional subscript, stored in a column-major array, like this:

0 3
1 4
2 5

If you give this array as input to an IDL function that expects data in row-major
format, IDL will calculate an answer other than the one you expect. Why? Because
while you consider the second element in this array to be the number one (the second
element in a column-major array), IDL considers the second element to be the
number three (the second element in a row-major array).

;Transpose the column-major array into row-major format and print:
PRINT, TRANSPOSE(A)

IDL prints:

0 1 2
3 4 5

Symmetric Arrays

It is possible for an array to be indistinguishable from its transpose. In this case the
number of columns and rows are identical and there is a symmetry between the rows
of the array and the columns of its transpose. Arrays satisfying this condition are
called symmetric. When dealing with symmetric arrays the use of the TRANSPOSE
function is unnecessary, since AT = A.

Multiplying Arrays

IDL has two operators used to multiply arrays. To illustrate the difference between
the two operators, consider the following two arrays:

;A 3-column by 2-row array:
array1 = [[1, 2, 1], [2, -1, 2]]
;A 2-column by 3-row array:
array2 = [[1, 3], [0, 1], [1, 1]]

The # Operator

The # operator computes array elements by multiplying the columns of the first array
by the rows of the second array. The resulting array has the same number of columns
as the first array and the same number of rows as the second array. The second array
must have the same number of columns as the first array has rows.
Using IDL Arrays and Matrices

448 Chapter 16: Mathematics
For example, consider the arrays defined above:

We obtain the elements of array1 # array2 as follows:

Therefore, when we issue the following command:

PRINT, array1#array2

IDL prints:

7 -1 7
2 -1 2
3 1 3

Tip
If one or both of the arrays are also transposed, such as TRANSPOSE(A) # B, it is
more efficient to use the MATRIX_MULTIPLY function, which does the transpose
simultaneously with the multiplication.

The ## Operator

The ## operator does what is commonly referred to as matrix multiplication. It
computes array elements by multiplying the rows of the first array by the columns of
the second array. The resulting array has the same number of rows as the first array
and the same number of columns as the second array. The second array must have the
same number of rows as the first array has columns.

For example, consider the arrays defined above:

array1 1 2 1

2 1– 2
array2,

1 3

0 1

1 1

= =

1() 1() 2() 3()+ 2() 1() 1–() 3()+ 1() 1() 2() 3()+

1() 0() 2() 1()+ 2() 0() 1–() 1()+ 1() 0() 2() 1()+

1() 1() 2() 1()+ 2() 1() 1–() 1()+ 1() 1() 2() 1()+

array1 1 2 1

2 1– 2
array2,

1 3

0 1

1 1

= =
Arrays and Matrices Using IDL

Chapter 16: Mathematics 449
We obtain the elements of array1 ## array2 as follows:

Therefore, when we issue the following command:

PRINT, array1##array2

IDL prints:

2 6
4 7

Multiplying Vectors

When using the # and ## operators to multiply vectors, note the following:

• For A # B, where A and B are vectors, IDL performs A # TRANSPOSE(B). In
this case, C = A # B is a matrix with Cij = Ai Bj. Mathematically, this is
equivalent to the outer product, usually denoted by A ⊗ B.

• For A ## B, where A and B are vectors, IDL performs TRANSPOSE(A) ## B.
In this case, C = A ## B is a matrix with Cij = Bi Aj.

• To compute the dot product, usually denoted by A ⋅ B, use
TRANSPOSE(A) # B.

Notes on the # and ## Operators

Note the following with regard to the array multiplication operators:

• The # and ## operators are order specific.

• A # B = B ## A.

1() 1() 2() 0() 1() 1()+ + 1() 3() 2() 1() 1() 1()+ +

2() 1() 1–() 0() 2() 1()+ + 2() 3() 1–() 1() 2() 1()+ +
Using IDL Arrays and Matrices

450 Chapter 16: Mathematics
Correlation Analysis

Given two n-element sample populations, X and Y, it is possible to quantify the
degree of fit to a linear model using the correlation coefficient. The correlation
coefficient, r, is a scalar quantity in the interval [-1.0, 1.0], and is defined as the ratio
of the covariance of the sample populations to the product of their standard
deviations.

or

The correlation coefficient is a direct measure of how well two sample populations
vary jointly. A value of r = +1 or r = –1 indicates a perfect fit to a positive or negative
linear model, respectively. A value of r close to +1 or –1 indicates a high degree of
correlation and a good fit to a linear model. A value of r close to 0 indicates a poor fit
to a linear model.

Correlation Example

The following sample populations represent a perfect positive linear correlation.

X = [-8.1, 1.0, -14.3, 4.2, -10.1, 4.3, 6.3, 5.0, 15.1, -2.2]
Y = [-9.8, -0.7, -16.0, 2.5, -11.8, 2.6, 4.6, 3.3, 13.4, -3.9]
;Compute the correlation coefficient of X and Y.
PRINT, CORRELATE(X, Y)

IDL prints:

1.00000

The following sample populations represent a high negative linear correlation.

X = [1.8, -2.7, 0.7, -0.5, -1.3, -0.9, 0.6, -1.5, 2.5, 3.0]
Y = [-4.7, 9.8, -3.7, 2.8, 5.1, 3.9, -3.6, 5.8, -7.3, -7.4]
;Compute the correlation coefficient of X and Y:
PRINT, CORRELATE(X, Y)

r covariance of X and Y
standard deviation of X() standard deviation of Y()

---=

r

1
N 1–
------------- xi

xk

N

k 0=

N 1–

∑–

yi

yk

N

k 0=

N 1–

∑–

i 0=

N 1–

∑

1
N 1–
------------- xi

xk

N

k 0=

N 1–

∑–

 2

i 0=

N 1–

∑ 1
N 1–
------------- yi

yk

N

k 0=

N 1–

∑–

 2

i 0=

N 1–

∑
--=
Correlation Analysis Using IDL

Chapter 16: Mathematics 451
IDL prints:

-0.979907

The following sample populations represent a poor linear correlation.

X = [-1.8, 0.1, -0.1, 1.9, 0.5, 1.1, 1.9, 0.3, -0.2, -1.0]
Y = [1.5, -1.0, -0.6, 1.1, 0.7, -0.7, 1.1, -0.1, 0.6, -0.1]
;Compute the correlation coefficient of X and Y:
PRINT, CORRELATE(X, Y)

IDL prints:

0.0322859

Notes on Interpreting the Correlation Coefficient

When interpreting the value of the correlation coefficient, it is important to remember
the following two caveats:

1. Although a high degree of correlation (a value close to +1 or –1) indicates a
good mathematical fit to a linear model, its applied interpretation may be
completely nonsensical. For example, there may be a high degree of
correlation between the number of scientists using IDL to study atmospheric
phenomena and the consumption of alcohol in Russia, but the two events are
clearly unrelated.

2. Although a correlation coefficient close to 0 indicates a poor fit to a linear
model, it does not mean that there is no correlation between the two sample
populations. It is possible that the relationship between X and Y is accurately
described by a nonlinear model. See “Curve and Surface Fitting” on page 454
for further details on fitting data to linear and nonlinear models.

Multiple Linear Models

The fundamental principles of correlation that apply to the linear model of two
sample populations may be extended to the multiple-linear model. The degree of
relationship between three or more sample populations may be quantified using the
multiple correlation coefficient. The degree of relationship between two sample
populations when the effects of all other sample populations are removed may be
quantified using the partial correlation coefficient. Both of these coefficients are
scalar quantities in the interval [0.0, 1.0]. A value of +1 indicates a perfect linear
relationship between populations. A value close to +1 indicates a high degree of
linear relationship between populations; whereas a value close to 0 indicates a poor
linear relationship between populations. (Although a value of 0 indicates no linear
Using IDL Correlation Analysis

452 Chapter 16: Mathematics
relationship between populations, remember that there may be a nonlinear
relationship.)

Partial Correlation Example

Define the independent (X) and dependent (Y) data.

X = [[0.477121, 2.0, 13.0], $
[0.477121, 5.0, 6.0], $
[0.301030, 5.0, 9.0], $
[0.000000, 7.0, 5.5], $
[0.602060, 3.0, 7.0], $
[0.698970, 2.0, 9.5], $
[0.301030, 2.0, 17.0], $
[0.477121, 5.0, 12.5], $
[0.698970, 2.0, 13.5], $
[0.000000, 3.0, 12.5], $
[0.602060, 4.0, 13.0], $
[0.301030, 6.0, 7.5], $
[0.301030, 2.0, 7.5], $
[0.698970, 3.0, 12.0], $
[0.000000, 4.0, 14.0], $
[0.698970, 6.0, 11.5], $
[0.301030, 2.0, 15.0], $
[0.602060, 6.0, 8.5], $
[0.477121, 7.0, 14.5], $
[0.000000, 5.0, 9.5]]

Y = [97.682, 98.424, 101.435, 102.266, 97.067, 97.397, $
99.481, 99.613, 96.901, 100.152, 98.797, 100.796, $
98.750, 97.991, 100.007, 98.615, 100.225, 98.388, $
98.937, 100.617]

Compute the multiple correlation of Y on the first column of X. The result should be
0.798816.

PRINT, M_CORRELATE(X[0,*], Y)

IDL prints:

0.798816

Compute the multiple correlation of Y on the first two columns of X. The result
should be 0.875872.

PRINT, M_CORRELATE(X[0:1,*], Y)

IDL prints:

0.875872
Correlation Analysis Using IDL

Chapter 16: Mathematics 453
Compute the multiple correlation of Y on all columns of X. The result should be
0.877197.

PRINT, M_CORRELATE(X, Y)

IDL prints:

0.877197
;Define the five sample populations.
X0 = [30, 26, 28, 33, 35, 29]
X1 = [0.29, 0.33, 0.34, 0.30, 0.30, 0.35]
X2 = [65, 60, 65, 70, 70, 60]
X3 = [2700, 2850, 2800, 3100, 2750, 3050]
Y = [37, 33, 32, 37, 36, 33]

Compute the partial correlation of X1 and Y with the effects of X0, X2 and X3
removed.

PRINT, P_CORRELATE(X1, Y, REFORM([X0,X2,X3], 3, N_ELEMENTS(X1)))

IDL prints:

0.996017

Routines for Computing Correlations

Below is a brief description of IDL routines for computing correlations. More
detailed information is available in the IDL Reference Guide.

A_CORRELATE Computes autocorrelation.

C_CORRELATE Computes cross correlation.

CORRELATE Computes the linear Pearson correlation.

M_CORRELATE Computes multiple correlation coefficient.

P_CORRELATE Computes partial correlation coefficient.

R_CORRELATE Computes rank correlation.

Table 16-2: Correlation Routines in IDL
Using IDL Correlation Analysis

454 Chapter 16: Mathematics
Curve and Surface Fitting

The problem of curve fitting may be stated as follows:

Given a tabulated set of data values {xi, yi} and the general form of a mathematical
model (a function f(x) with unspecified parameters), determine the parameters of the
model that minimize an error criterion. The problem of surface fitting involves
tabulated data of the form {xi, yi, zi} and a function f(x, y) of two spatial dimensions.

For example, we can use the CURVEFIT routine to determine the parameters A and B
of a user-supplied function f(x), such that the sums of the squares of the residuals
between the tabulated data {xi, yi} and function are minimized. We will use the
following function and data:

f (x) = a (1 –e-bx)

xi = [0.25, 0.75, 1.25, 1.75, 2.25]

yi = [0.28, 0.57, 0.68, 0.74, 0.79]

First we must provide a procedure written in IDL to evaluate the function, f, and its
partial derivatives with respect to the parameters a0 and a1:

PRO funct, X, A, F, PDER
F = A[0] * (1.0 - EXP(-A[1] * X))
; If the function is called with four parameters,
; calculate the partial derivatives:
IF N_PARAMS() GE 4 THEN BEGIN

; PDER’s column dimension is equal to the number of
; elements in xi and its row dimension is equal to
; the number of parameters in the function F:
pder = FLTARR(N_ELEMENTS(X), 2)
; Compute the partial derivatives with respect to
; a0 and place in the first row of PDER:
pder[*, 0] = 1.0 - EXP(-A[1] * X)
; Compute the partial derivatives with respect to
; a1 and place in the second row of PDER:
pder[*, 1] = A[0] * x * EXP(-A[1] * X)

ENDIF
END

Note
The function will not calculate the partial derivatives unless it is called with four
parameters. This allows the calling routine (in this case CURVEFIT) to avoid the
extra computation in cases when the partial derivatives are not needed.
Curve and Surface Fitting Using IDL

Chapter 16: Mathematics 455
Next, we can use the following IDL commands to find the function’s parameters:

;Define the vectors of tabulated:
X = [0.25, 0.75, 1.25, 1.75, 2.25]
;data values:
Y = [0.28, 0.57, 0.68, 0.74, 0.79]
;Define a vector of weights:
W = 1.0 / Y
;Provide an initial guess of the function’s parameters:
A = [1.0, 1.0]
;Compute the parameters a0 and a1:
yfit = CURVEFIT(X, Y, W, A, SIGMA_A, FUNCTION_NAME = 'funct')
;Print the parameters, which are returned in A:
PRINT, A

IDL prints:

0.787386 1.71602

Thus the nonlinear function that best fits the data is:

f (x) = 0.787386 (1 -–e-1.71602x)

Routines for Curve and Surface Fitting

Below is a brief description of IDL routines for curve and surface fitting. More
detailed information is available in the IDL Reference Guide.

COMFIT Fits paired data using one of six common filtering
functions.

CRVLENGTH Computes the length of a curve.

CURVEFIT Fits multivariate data with a user-supplied function.

GAUSS2DFIT Fits a 2D elliptical Gaussian equation to rectilinearly
gridded data.

GAUSSFIT Fits the sum of a Gaussian and a quadratic.

GRID_TPS Uses thin plate splines to interpolate a set of values
over a regular 2D grid, from irregularly sampled data
values.

KRIG2D Interpolates set of points using kriging.

Table 16-3: Curve and Surface Fitting Routines in IDL
Using IDL Curve and Surface Fitting

456 Chapter 16: Mathematics
LADFIT Fits paired data using least absolute deviation
method.

LINFIT Fits by minimizing the Chi-square error statistic.

LMFIT Does a non-linear least squares fit.

MIN_CURVE_SURF Interpolates points with a minimum curvature surface
or a thin-plate-spline surface. Useful with
CONTOUR.

POLY_FIT Performs a least-square polynomial fit.

REGRESS Computes fit using multiple linear regression.

SFIT Performs polynomial fit to a surface.

SVDFIT Multivariate least squares fit using SVD method.

TRIGRID Interpolates irregularly-gridded data to a regular grid
from a triangulation.

Table 16-3: Curve and Surface Fitting Routines in IDL
Curve and Surface Fitting Using IDL

Chapter 16: Mathematics 457
Eigenvalues and Eigenvectors

Consider a system of equations that satisfies the array-vector relationship Ax = λx,
where A is an n-by-n array, x is an n-element vector, and λ is a scalar. A scalar λ and
nonzero vector x that simultaneously satisfy this relationship are referred to as an
eigenvalue and an eigenvector of the array A, respectively. The set of all eigenvectors
of the array A is then referred to as the eigenspace of A. Ideally, the eigenspace will
consist of n linearly-independent eigenvectors, although this is not always the case.

IDL computes the eigenvalues and eigenvectors of a real symmetric n-by-n array
using Householder transformations and the QL algorithm with implicit shifts. The
eigenvalues of a real, n-by-n nonsymmetric array are computed from the upper
Hessenberg form of the array using the QR algorithm. Eigenvectors are computed
using inverse subspace iteration.

Although it is not practical for numerical computation, the problem of computing
eigenvalues and eigenvectors can also be defined in terms of the determinant
function. The eigenvalues of an n-by-n array A are the roots of the polynomial
defined by det(A – λI), where I is the identity matrix (an array with 1s on the main
diagonal and 0s elsewhere) with the same dimensions as A. By expressing
eigenvalues as the roots of a polynomial, we see that they can be either real or
complex. If an eigenvalue is complex, its corresponding eigenvectors are also
complex.

The following examples demonstrate how to use IDL to compute the eigenvalues and
eigenvectors of real, symmetric and nonsymmetric n-by-n arrays. Note that it is
possible to check the accuracy of the computed eigenvalues and eigenvectors by
algebraically manipulating the definition given above to read Ax – λx = 0; in this case
0 denotes an n-element vector, all elements of which are zero.

Symmetric Array with n Distinct Real Eigenvalues

Example

To compute eigenvalues and eigenvectors of a real, symmetric, n-by-n array, begin
with a symmetric array A.

Note
The eigenvalues and eigenvectors of a real, symmetric n-by-n array are real
numbers.
Using IDL Eigenvalues and Eigenvectors

458 Chapter 16: Mathematics
A = [[3.0, 1.0, -4.0], $
[1.0, 3.0, -4.0], $
[-4.0, -4.0, 8.0]]

; Compute the tridiagonal form of A:
TRIRED, A, D, E
; Compute the eigenvalues (returned in vector D) and
; the eigenvectors (returned in the rows of the array A):
TRIQL, D, E, A
; Print eigenvalues:
PRINT, D

IDL prints:

2.00000 4.76837e-07 12.0000

The exact values are: [2.0, 0.0, 12.0].

;Print the eigenvectors, which are returned as row vectors in A:
PRINT, A

IDL prints:

0.707107 -0.707107 0.00000
-0.577350 -0.577350 -0.577350
-0.408248 -0.408248 0.816497

The exact eigenvectors are:

Nonsymmetric Array with n Distinct Real and Complex
Eigenvalues

Example

To compute the eigenvalues and eigenvectors of a real, nonsymmetric n-by-n array,
begin with an array A. In this example, there are n distinct eigenvalues and n linearly-
independent eigenvectors.

A = [[1.0, 0.0, 2.0], $
[0.0, 1.0, -1.0], $
[-1.0, 1.0, 1.0]]

; Reduce to upper Hessenberg format:
hes = ELMHES(A)
; Compute the eigenvalues:

1 2⁄ 1– 2⁄ 0

1– 3⁄ 1– 3⁄ 1– 3⁄

1– 6⁄ 1– 6⁄ 2 6⁄
Eigenvalues and Eigenvectors Using IDL

Chapter 16: Mathematics 459
evals = HQR(hes)
; Print the eigenvalues:
PRINT, evals

IDL prints:

(1.00000, -1.73205)(1.00000, 1.73205)
(1.00000, 0.00000)

Note
The three eigenvalues are distinct, and that two are complex. Note also that
complex eigenvalues of an n-by-n real, nonsymmetric array always occur in
complex conjugate pairs.

; Initialize a variable to contain the residual:
residual = 1
; Compute the eigenvectors and the residual for each
; eigenvalue/eigenvector pair, using double-precision arithmetic:
evecs = EIGENVEC(A, evals, /DOUBLE, RESIDUAL=residual)
; Print the eigenvectors, which are returned as
; row vectors in evecs:
PRINT, evecs[*,0]

IDL prints:

(0.68168704, 0.18789033)(-0.34084352, -0.093945164)
(0.16271780, -0.59035830)
PRINT, evecs[*,1]

IDL prints:

(0.18789033, 0.68168704)(-0.093945164, -0.34084352)
(-0.59035830, 0.16271780)
PRINT, evecs[*,2]

IDL prints:

(0.70710678, 0.0000000)(0.70710678, 0.0000000)
(-2.3570226e-21, 0.0000000)

We can check the accuracy of these results using the relation Ax – λx = 0. The array
contained in the variable specified by the RESIDUAL keyword contains the result of
this computation.

PRINT, residual

IDL prints:

(-1.2021898e-07, 1.1893681e-07)(6.0109490e-08, -5.9468404e-08)
(1.0300230e-07, 1.0411269e-07)
(1.1893681e-07, -1.2021898e-07)(-5.9468404e-08, 6.0109490e-08)
Using IDL Eigenvalues and Eigenvectors

460 Chapter 16: Mathematics
(1.0411269e-07, 1.0300230e-07)
(0.0000000, 0.0000000)(0.0000000, 0.0000000)

The results are all zero to within machine precision.

Repeated Eigenvalues

Example

To compute the eigenvalues and eigenvectors of a real, nonsymmetric n-by-n array,
begin with an array A. In this example, there are fewer than n distinct eigenvalues, but
n independent eigenvectors are available.

A = [[8.0, 0.0, 3.0], $
[2.0, 2.0, 1.0], $
[2.0, 0.0, 3.0]]

; Reduce A to upper Hessenberg form and compute the eigenvalues.
; Note that both operations can be combined into a single command.
evals = HQR(ELMHES(A))
; Print the eigenvalues:
PRINT, evals

IDL prints:

(9.00000, 0.00000) (2.00000, 0.00000)
(2.00000, 0.00000)

Note
The three eigenvalues are real, but only two are distinct.

; Initialize a variable to contain the residual:
residual = 1
; Compute the eigenvectors and residual, using
; double-precision arithmetic:
evecs = EIGENVEC(A, evals, /DOUBLE, RESIDUAL=residual)
; Print the eigenvectors:
PRINT, evecs[*,0]

IDL prints:

(0.90453403, 0.0000000)(0.30151134, 0.0000000)
(0.30151134, 0.0000000)
PRINT, evecs[*,1]

IDL prints:

(-0.27907279, 0.0000000)(-0.78140380, 0.0000000)
(0.55814557, 0.0000000)
PRINT, evecs[*,2]
Eigenvalues and Eigenvectors Using IDL

Chapter 16: Mathematics 461
IDL prints:

(-0.27907279, 0.0000000)(-0.78140380, 0.0000000)
(0.55814557, 0.0000000)

We can compute an independent eigenvector for the repeated eigenvalue (2.0) by
perturbing it slightly, allowing the algorithm EIGENVEC to recognize the eigenvalue
as distinct and to compute a linearly-independent eigenvector.

newresidual = 1
evecs[*,2] = EIGENVEC(A, evals[2]+1.0e-6, /DOUBLE, $

RESIDUAL = newresidual)
PRINT, evecs[*,2]

IDL prints:

(-0.33333333, 0.0000000)(0.66666667, 0.0000000)
(0.66666667, 0.0000000)

Once again, we can check the accuracy of these results by checking that each element
in the residuals —for both the original eigenvectors and the perturbed eigenvector—
is zero to within machine precision.

Example 4: The So-called Defective Case

In the so-called defective case, there are fewer than n distinct eigenvalues and fewer
than n linearly-independent eigenvectors. Begin with an array A:

A = [[2.0, -1.0], $
[1.0, 0.0]]

; Reduce A to upper Hessenberg form and compute the eigenvalues.
; Note that both operations can be combined into a single command.
evals = HQR(ELMHES(A))
; Print the eigenvalues:
PRINT, evals

IDL prints:

(1.00000, 0.00000)(1.00000, 0.00000)

Note
The two eigenvalues are real, but not distinct.

;Compute the eigenvectors, using double-precision arithmetic:
evecs = EIGENVEC(A, evals, /DOUBLE)
;Print the eigenvectors:
PRINT, evecs[*,0]

IDL prints:
Using IDL Eigenvalues and Eigenvectors

462 Chapter 16: Mathematics
(0.70710678, 0.0000000)(0.70710678, 0.0000000)
PRINT, evecs[*,1]

IDL prints:

(0.70710678, 0.0000000)(0.70710678, 0.0000000)

We attempt to compute an independent eigenvector using the method described in the
previous example:

evecs[*,1] = EIGENVEC(A, evals[1]+1.0e-6, /DOUBLE)
PRINT, evecs[1,*]

IDL prints:

(0.70710678, 0.0000000)(0.70710678, 0.0000000)

In this example, n independent eigenvectors do not exist. This situation is termed the
defective case and cannot be resolved analytically or numerically.

Routines for Computing Eigenvalues and Eigenvectors

Below is a brief description of IDL routines for computing eigenvalues and
eigenvectors. More detailed information is available in the IDL Reference Guide.

EIGENQL Computes eigenvalues and eigenvectors of a real, symmetric
array.

EIGENVEC Computes eigenvectors of a real, non-symmetric array.

ELMHES Reduces nonsymmetric array to upper Hessenberg form.

HQR Returns all eigenvalues of an upper Hessenberg array.

TRIQL Determines eigenvalues and eigenvectors of tridiagonal array.

TRIRED Reduces a real, symmetric array to tridiagonal form.

Table 16-4: Eigenvalue and Eigenvector Routines in IDL
Eigenvalues and Eigenvectors Using IDL

Chapter 16: Mathematics 463
Gridding and Interpolation

Given a set of tabulated data in n-dimensions with each dimension being described as
follows:

1. {xi, yi = f (xi)},

2. {xi, yi, zi = f (xi, yi)}, or

3. {xi, yi, zi, wi = f (xi, yi, zi)}

it is possible to calculate intermediate values of the function f using interpolation.
IDL includes a variety of routines to solve this type of problem.

The determination of intermediate values is based upon an interpolating function that
establishes a relationship between the tabulated data points. Different algorithms
employ different types of interpolating functions suitable for different types of data
trends.

Unlike curve-fitting algorithms, interpolation requires that the interpolating function
be an exact fit at each of the tabulated data points. Interpolation does not use any type
of error analysis and its accuracy depends upon the behavior of the interpolating
function between successive data points. Polynomial, spline, nearest-neighbor, and
kriging are among the interpolation methods used in IDL.

Gridding, a topic closely related to interpolation, is the problem of creating
uniformly-spaced planar data from irregularly-spaced data. IDL handles this type of
problem by constructing a Delaunay triangulation. This method is highly accurate
and has great utility since many of IDL’s graphics routines require uniformly-gridded
data. Extrapolation, the estimation of values outside the range of tabulated data, is
also possible using this method.

Routines for Gridding and Interpolation

Below is a brief description of IDL routines for gridding and interpolation. More
detailed information is available in the IDL Reference Guide.

Routine Description

BILINEAR Computes array using bilinear interpolation.

GRID_TPS Uses thin plate splines to interpolate a set of values over
a regular 2D grid, from irregularly sampled data values.

Table 16-5: Gridding and Interpolation Routines in IDL
Using IDL Gridding and Interpolation

464 Chapter 16: Mathematics
GRID3 Creates a regularly-gridded 3D dataset from a set of
scattered 3D nodes.

INTERPOL Performs linear interpolation on vectors.

INTERPOLATE Returns an array of interpolates.

KRIG2D Interpolates set of points using kriging.

MIN_CURVE_SURF Interpolates points with a minimum curvature surface or
a thin-plate-spline surface. Useful with CONTOUR.

POLAR_SURFACE Interpolates a surface from polar coordinates to
rectangular coordinates.

SPH_SCAT Performs spherical gridding.

SPL_INIT Establishes the type of interpolating spline.

SPL_INTERP Performs cubic spline interpolation (Numerical
Recipes).

SPLINE Performs cubic spline interpolation.

SPLINE_P Performs parametric cubic spline interpolation.

TRI_SURF Interpolates gridded set of points with a smooth quintic
surface.

TRIANGULATE Constructs Delaunay triangulation of a planar set of
points.

TRIGRID Interpolates irregularly-gridded data to a regular grid
from a triangulation.

VALUE_LOCATE Finds the intervals within a given monotonic vector that
brackets a given set of one or more search values.

VORONOI Computes Voronoi polygon given Delaunay
triangulation.

Routine Description

Table 16-5: Gridding and Interpolation Routines in IDL (Continued)
Gridding and Interpolation Using IDL

Chapter 16: Mathematics 465
Hypothesis Testing

Hypothesis testing tests one or more sample populations for a statistical characteristic
or interaction. The results of the testing process are generally used to formulate
conclusions about the probability distributions of the sample populations.

Hypothesis testing involves four steps:

• The formulation of a hypothesis.

• The selection and collection of sample population data.

• The application of an appropriate test.

• The interpretation of the test results.

For example, suppose the FDA wishes to establish the effectiveness of a new drug in
the treatment of a certain ailment. Researchers test the assumption that the drug is
effective by administering it to a sample population and collecting data on the
patients’ health. Once the data are collected, an appropriate statistical test is selected
and the results analyzed. If the interpretation of the test results suggests a statistically
significant improvement in the patients’ condition, the researchers conclude that the
drug will be effective in general.

It is important to remember that a valid or successful test does not prove the proposed
hypothesis. Only by disproving competing or opposing hypotheses can a given
assumption’s validity be statistically established.

One- and Two-sided Tests

In the above example, only the hypothesis that the drug would significantly improve
the condition of the patients receiving it was tested. This type of test is called one-
sided or one-tailed, because it is concerned with deviation in one direction from the
norm (in this case, improvement of the patients’ condition). A hypothesis designed to
test the improvement or ill-effect of the trial drug on the patient group would be
called two-sided or two-tailed.

Parametric and Nonparametric Tests

Tests of hypothesis are usually classified into parametric and nonparametric methods.
Parametric methods make assumptions about the underlying distribution from which
sample populations are selected. Nonparametric methods make no assumptions about
a sample population’s distribution and are often based upon magnitude-based
ranking, rather than actual measurement data. In many cases it is possible to replace a
Using IDL Hypothesis Testing

466 Chapter 16: Mathematics
parametric test with a corresponding nonparametric test without significantly
affecting the conclusion.

The following example demonstrates this by replacing the parametric T-means test
with the nonparametric Wilcoxon Rank-Sum test to test the hypothesis that two
sample populations have significantly different means of distribution.

Define two sample populations.

X = [257, 208, 296, 324, 240, 246, 267, 311, 324, 323, 263, $
305, 270, 260, 251, 275, 288, 242, 304, 267]

Y = [201, 56, 185, 221, 165, 161, 182, 239, 278, 243, 197, $
271, 214, 216, 175, 192, 208, 150, 281, 196]

Compute the T-statistic and its significance, using IDL’s TM_TEST function,
assuming that X and Y belong to Normal populations with the same variance.

PRINT, TM_TEST(X, Y)

IDL prints:

5.52839 2.52455e-06

The small value of the significance (2.52455e-06) indicates that X and Y have
significantly different means.

Compute the Wilcoxon Rank-Sum Test, using IDL’s RS_TEST function, to test the
hypothesis that X and Y have the same mean of distribution.

PRINT, RS_TEST(X, Y)

IDL prints:

-4.26039 1.01924e-05

The small value of the computed probability (1.01924e-05) requires the rejection of
the proposed hypothesis and the conclusion that X and Y have significantly different
means of distribution.

Each of IDL’s 11 parametric and nonparametric hypothesis testing functions is based
upon a well-known and widely-accepted statistical test. Each of these functions
returns a two-element vector containing the statistic on which the test is based and its
significance. Examples are provided and demonstrate how the result is interpreted.
Hypothesis Testing Using IDL

Chapter 16: Mathematics 467
Routines for Hypothesis Testing

Below is a brief description of IDL routines for hypothesis testing. More detailed
information is available in the IDL Reference Guide.

Routine Description

CTI_TEST Performs chi-square goodness-of-fit test.

FV_TEST Performs the F-variance test.

KW_TEST Performs Kruskal-Wallis H-test.

LNP_TEST Computes the Lomb Normalized Periodogram.

MD_TEST Performs the Median Delta test.

R_TEST Runs test for randomness.

RS_TEST Performs the Wilcoxon Rank-Sum test.

S_TEST Performs the Sign test.

TM_TEST Performs t-means test.

XSQ_TEST Computes Chi-square goodness-of-fit test.

Table 16-6: Hypothesis Testing Routines in IDL
Using IDL Hypothesis Testing

468 Chapter 16: Mathematics
Integration

Numerical methods of approximating integrals are important in many areas of pure
and applied science. For a function of a single variable, f (x), it is often the case that
the antiderivative F = ∫ f (x) dx is unavailable using standard techniques such as
trigonometric substitutions and integration-by-parts formulas. These standard
techniques become increasingly unusable when integrating multivariate functions,
f (x, y) and f (x, y, z). Numerically approximating the integral operator provides the
only method of solution when the antiderivative is not explicitly available. IDL offers
the following numerical methods for the integration of uni-, bi-, and trivariate
functions:

• Integration of a univariate function over an open or closed interval is possible
using one of several routines based on well known methods developed by
Romberg and Simpson.

• The problem of integrating over a tabulated set of data { xi, yi = f (xi) } can be
solved using a highly accurate 5-point Newton-Cotes formula. This method is
more accurate and efficient than using interpolation or curve-fitting to find an
approximate function and then integrating.

• Integration of a bivariate function over a regular or irregular region in the x-y
plane is possible using an iterated Gaussian Quadrature routine.

• Integration of a trivariate function over a regular or irregular region in x-y-z
space is possible using an iterated Gaussian Quadrature routine.

Note
IDL’s iterated Gaussian Quadrature routines, INT_2D and INT_3D, follow the dy-
dx and dz-dy-dx order of evaluation, respectively. Problems not conforming to this
standard must be changed as described in the following example.

I f x() xd
x a=

x b=

∫=

I f x y,() yd xd
y p x()=

y q x()=

∫x a=

x b=

∫=

I f x y z, ,() zd yd xd
z u x y,()=

z v x y,()=

∫y p x()=

y q x()=

∫x a=

x b=

∫=
Integration Using IDL

Chapter 16: Mathematics 469
A Bivariate Function

Example

Suppose that we wish to evaluate

The order of integration is initially described as a dx-dy region in the x-y plane. Using
the diagram below, you can easily change the integration order to dy-dx.

The integral is now of the form

The new expression can be evaluated using the INT_2D function.

To use INT_2D, we must specify the function to be integrated and expressions for the
upper and lower limits of integration. First, we write an IDL function for the
integrand, the function f (x, y):

FUNCTION fxy, X, Y
RETURN, Y * COS(X^5)

END

Next, we write a function for the limits of integration of the inner integral. Note that
the limits of the outer integral are specified numerically, in vector form, while the

Figure 16-1: The Bivariate Function

y x
5()cos⋅ xd yd

x y=

x 2=

∫y 0=

y 4=

∫

Y

X

x y=

x 2=

2 4,()

dy
dx

y x
5()cos⋅ yd xd

y 0=

y x2=

∫x 0=

x 2=

∫

Using IDL Integration

470 Chapter 16: Mathematics
limits of the inner integral must be specified as an IDL function even if they are
constants. In this case, the function is:

FUNCTION pq_limits, X
RETURN, [0.0, X^2]

END

Now we can use the following IDL commands to print the value of the integral
expressed above. First, we define a variable AB_LIMITS containing the vector of
lower and upper limits of the outer integral. Next, we call INT_2D. The first
argument is the name of the IDL function that represents the integrand (FXY, in this
case). The second argument is the name of the variable containing the vector of limits
for the outer integral (AB_LIMITS, in this case). The third argument is the name of
the IDL function defining the lower and upper limits of the inside integral
(PQ_LIMITS, in this case). The fourth argument (48) refers to the number of
transformation points used in the computation. As a general rule, the number of
transformation points used with iterated Gaussian Quadrature should increase as the
integrand becomes more oscillatory or the region of integration becomes more
irregular.

ab_limits = [0.0, 2.0]
PRINT, INT_2D('fxy', ab_limits, 'pq_limits', 48)

IDL prints:

0.055142668

This is the exact solution to 9 decimal accuracy.

A Trivariate Function

Example

Suppose that we wish to evaluate

This integral can be evaluated using the INT_3D function. As with INT_2D, we must
specify the function to be integrated and expressions for the upper and lower limits of
integration. Note that in this case IDL functions must be provided for the upper and
lower integration limits of both inside integrals.

For the above integral, the required functions are the integrand f (x, y, z):

FUNCTION fxyz, X, Y, Z
RETURN, Z * (X^2 + Y^2 + Z^2)^1.5

z x
2

y
2

z
2

+ +()
3 2⁄

zd yd xd
z 0=

z 4 x2– y2–=
∫

y 4 x2––=

y 4 x2–=
∫x 2–=

x 2=

∫

Integration Using IDL

Chapter 16: Mathematics 471
END

The limits of integration of the first inside integral:

FUNCTION pq_limits, X
RETURN, [-SQRT(4.0 - X^2), SQRT(4.0 -X^2)]

END

The limits of integration of the second inside integral:

FUNCTION uv_limits, X, Y
RETURN, [0.0, SQRT(4.0 - X^2 - Y^2)]

END

We can use the following IDL commands to determine the value of the above integral
using 6, 10, 20 and 48 transformation points.

For 6 transformation points:

PRINT, INT_3D('fxyz', [-2.0, 2.0], $
'pq_limits', 'uv_limits', 6)

IDL prints:

57.417720

For 10 transformation points:

PRINT, INT_3D('fxyz', [-2.0, 2.0], $
'pq_limits', 'uv_limits', 10)

IDL prints:

57.444248

20 transformation points:

PRINT, INT_3D('fxyz', [-2.0, 2.0], $
'pq_limits', 'uv_limits', 20)

IDL prints:

57.446201

48 transformation points:

PRINT, INT_3D('fxyz', [-2.0, 2.0], $
'pq_limits', 'uv_limits', 48)

IDL prints:

57.446265

The exact solution to 6-decimal accuracy is 57.446267.
Using IDL Integration

472 Chapter 16: Mathematics
Routines for Differentiation and Integration

Below is a brief description of IDL routines for differentiation and integration. More
detailed information is available in the IDL Reference Guide.

CRVLENGTH Computes the length of a curve.

DERIV Performs differentiation using 3-point Langrangian
interpolation.

DERIVSIG Computes standard deviation of derivative found by
DERIV.

INT_2D Computes the double integral of a bivariate function.

INT_3D Computes the triple integral of a trivariate function.

INT_TABULATED Integrates a tabulated set of data.

LSODE Advances a solution to a system of ordinary differential
equations one time-step H.

QROMB Evaluates integral over a closed interval.

QROMO Evaluates integral over an open interval.

QSIMP Evaluates integral using Simpson’s rule.

RK4 Solves differential equations using fourth-order Runge-
Kutta method.

Table 16-7: Differentiation and Integration Routines in IDL
Integration Using IDL

Chapter 16: Mathematics 473
Linear Systems

IDL offers a variety of methods for the solution of simultaneous linear equations. In
order to use these routines successfully, the user should consider both existence and
uniqueness criteria and the potential difficulties in finding the solution numerically.

The solution vector x of an n-by-n linear system Ax = b is guaranteed to exist and to
be unique if the coefficient array A is invertible. Using a simple algebraic
manipulation, it is possible to formulate the solution vector x in terms of the inverse
of the coefficient array A and the right-side vector b: x = A-1b. Although this
relationship provides a concise mathematical representation of the solution, it is
never used in practice. Array inversion is computationally expensive (requiring a
large number of floating-point operations) and prone to severe round-off errors.

An alternate way of describing the existence of a solution is to say that the system
Ax = b is solvable if and only if the vector b may be expressed as a linear
combination of the columns of A. This definition is important when considering the
solutions of non-square (over- and under-determined) linear systems.

While the invertibility of the coefficient array A may ensure that a solution exists, it
does not help in determining the solution. Some systems can be solved accurately
using numerical methods whereas others cannot. In order to better understand the
accuracy of a numerical solution, we can classify the condition of the system it
solves.

The scalar quantity known as the condition number of a linear system is a measure of
a solution’s sensitivity to the effects of finite-precision arithmetic. The condition
number of an n-by-n linear system Ax = b is computed explicitly as |A||A-1| (where | |
denotes a Euclidean norm). A linear system whose condition number is small is
considered well-conditioned and well suited to numerical computation. A linear
system whose condition number is large is considered ill-conditioned and prone to
computational errors. To some extent, the solution of an ill-conditioned system may
be improved using an extended-precision data type (such as double-precision float).
Other situations require an approximate solution to the system using its Singular
Value Decomposition.

The following two examples show how the singular value decomposition may be
used to find solutions when a linear system is over- or underdetermined.
Using IDL Linear Systems

474 Chapter 16: Mathematics
Overdetermined Systems

Example

In the case of the overdetermined system (when there are more linear equations than
unknowns), the vector b cannot be expressed as a linear combination of the columns
of array A. (In other words, b lies outside of the subspace spanned by the columns of
A.) Using IDL’s SVDC procedure, it is possible to determine a projected solution of
the overdetermined system (b is projected onto the subspace spanned by the columns
of A and then the system is solved). This type of solution has the property of
minimizing the residual error E = b – Ax in a least-squares sense.

Suppose that we wish to solve the following linear system:

The vector b does not lie in the two-dimensional subspace spanned by the columns of
A (there is no linear combination of the columns of A that yield b), and therefore an
exact solution is not possible.

It is possible, however, to find a solution to this system that minimizes the residual
error by orthogonally projecting the vector b onto the two-dimensional subspace
spanned by the columns of the array A. The projected vector is then used as the right-
hand side of the system. The orthogonal projection of b onto the column space of A
may be expressed with the array-vector product A(ATA)-1ATb, where A(ATA)-1AT is
known as the projection matrix, P.

Figure 16-2: Overdetermined System Diagram

1.0 2.0

1.0 3.0

0.0 0.0

x0

x1

4.0

5.0

6.0

=

Pb

column 1

column 2

b

Linear Systems Using IDL

Chapter 16: Mathematics 475
In this example, the array-vector product Pb yields:

and we wish to solve the linear system

In many cases, the explicit calculation of the projected solution is numerically
unstable, resulting in large accumulated round-off errors. For this reason it is best to
use singular value decomposition to effect the orthogonal projection of the vector b
onto the subspace spanned by the columns of the array A.

The following IDL commands use singular value decomposition to solve the system
in a numerically stable manner. Begin with the array A:

A = [[1.0, 2.0], $
[1.0, 3.0], $
[0.0, 0.0]]

; Define the right-hand side vector B:
B = [4.0, 5.0, 6.0]
; Compute the singular value decomposition of A:
SVDC, A, W, U, V

Create a diagonal array WP of reciprocal singular values from the output vector W.
To avoid overflow errors when the reciprocal values are calculated, only elements
with absolute values greater than or equal to 1.0 × 10-5 are reciprocated.

N = N_ELEMENTS(W)
WP = FLTARR(N, N)
FOR K = 0, N-1 DO $

IF ABS(W(K)) GE 1.0e-5 THEN WP(K, K) = 1.0/W(K)

We can now express the solution to the linear system as a array-vector product. (See
Section 2.6 of Numerical Recipes for a derivation of this formula.)

X = V ## WP ## TRANSPOSE(U) ## B
; Print the solution:
PRINT, X

IDL Prints:

4.0

5.0

0.0

1.0 2.0

1.0 3.0

0.0 0.0

x0

x1

4.0

5.0

0.0

where
x0

x1

= 2.0

1.0
=

Using IDL Linear Systems

476 Chapter 16: Mathematics
2.00000
1.00000

Underdetermined Systems

Example

In the case of the underdetermined system (when there are fewer linear equations
than unknowns), a unique solution is not possible. Using IDL’s SVDC procedure it is
possible to determine the minimal norm solution. Given a vector norm, this type of
solution has the property of having the minimal length of all possible solutions with
respect to that norm.

Suppose that we wish to solve the following linear system.

Using elementary row operations it is possible to reduce the system to

It is now possible to express the solution x in terms of x1 and x3:

The values of x1 and x3 are completely arbitrary. Setting x1 = 0 and x3 = 0 results in
one possible solution of this system:

Another possible solution is obtained using singular value decomposition and results
in the minimal norm condition. The minimal norm solution for this system is:

1.0 3.0 3.0 2.0

2.0 6.0 9.0 5.0

1.0– 3.0– 3.0 0.0

x0

x1

x2

x3

1.0

5.0

5.0

=

1.0 3.0 3.0 2.0

0.0 0.0 3.0 1.0

0.0 0.0 0.0 0.0

x0

x1

x2

x3

1.0

3.0

0.0

=

x

2– 3x1– x3–

x1

1 x3 3⁄–

x3

=

Linear Systems Using IDL

Chapter 16: Mathematics 477
Note that this vector also satisfies the solution x as it is expressed in terms of x1 and
x3.

The following IDL commands use singular value decomposition to find the minimal
norm solution. Begin with the array A:

A = [[1.0, 3.0, 3.0, 2.0], $
[2.0, 6.0, 9.0, 5.0], $
[-1.0, -3.0, 3.0, 0.0]]

; Define the right-hand side vector B:
B = [1.0, 5.0, 5.0]
; Compute the decomposition of A:
SVDC, A, W, U, V

Create a diagonal array WP of reciprocal singular values from the output vector W.
To avoid overflow errors when the reciprocal values are calculated, only elements
with absolute values greater than or equal to 1.0 × 10-5 are reciprocated.

N = N_ELEMENTS(W)
WP = FLTARR(N, N)
FOR K = 0, N-1 DO $

IF ABS(W(K)) GE 1.0e-5 THEN WP(K, K) = 1.0/W(K)

We can now express the solution to the linear system as a array-vector product. (See
Section 2.6 of Numerical Recipes for a derivation of this formula.) The solution is
expressed in terms of x1 and x3 with minimal norm.

X = V ## WP ## TRANSPOSE(U) ## B
;Print the solution:
PRINT, X

IDL Prints:

-0.211009
-0.633027

x

2.0–

0.0

1.0

0.0

=

x

0.211009–

0.633027–

0.963303

0.110092

=

Using IDL Linear Systems

478 Chapter 16: Mathematics
0.963303
0.110092

Complex Linear Systems

Example

We can use IDL’s LU_COMPLEX function to compute the solution to a linear system
with real and complex coefficients. Suppose we wish to solve the following linear system:

;First we define the real part of the complex coefficient array:
re = [[-1, 1, 2, 3], $

[-2, -1, 0, 3], $
[3, 0, 0, 0], $
[2, 1, 2, 2]]

;Next, we define the imaginary part of the coefficient array:
im = [[0, -3, 0, 3], $

[0, 3, 1, 1], $

[0, 4, -1, -3], $
[0, 1, 1, 1]]

; Combine the real and imaginary parts to form
; a single complex coefficient array:
A = COMPLEX(re, im)
; Define the right-hand side vector B:
B = [COMPLEX(15,-2), COMPLEX(-2,-1), COMPLEX(-20,11), $

COMPLEX(-10,10)
; Compute the solution using double-precision complex arithmetic:
Z = LU_COMPLEX(A, B, /DOUBLE)
PRINT, TRANSPOSE(Z), FORMAT = '(f5.2, ",", f5.2, "i")'

IDL prints:

-4.00, 1.00i
 2.00, 2.00i
 0.00, 3.00i
-0.00,-1.00i

We can check the accuracy of the computed solution by computing the residual,
Az–b:

PRINT, A##Z-B

1– 0i+ 1 3i– 2 0i+ 3 3i+

2– 0i+ 1– 3i+ 0– 1i+ 3 1i+

3 0i+ 0 4i+ 0 1i– 0– 3i–

2 0i+ 1 1i+ 2 1i+ 2 1i+

z0

z1

z2

z3

15 2i–

2– 1i–

20– 11i+

10– 10i+

=

Linear Systems Using IDL

Chapter 16: Mathematics 479
IDL prints:

(0.00000, 0.00000)
(0.00000, 0.00000)
(0.00000, 0.00000)
(0.00000, 0.00000)

Routines for Solving Simultaneous Linear Equations

Below is a brief description of IDL routines for solving simultaneous linear
equations. More detailed information is available in the IDL Reference Guide.

CHOLDC Constructs Cholesky decomposition of a matrix.

CHOLSOL Solves set of linear equations (use with CHOLDC).

COND Computes the condition number of a square matrix.

CRAMER Solves system of linear equations using Cramer’s rule.

CROSSP Computes vector cross product.

DETERM Computes the determinant of a square matrix.

GS_ITER Solves linear system using Gauss-Seidel iteration.

IDENTITY Returns an identity array.

INVERT Computes the inverse of a square array.

LINBCG Solves a set of sparse linear equations using the iterative
biconjugate gradient method.

LU_COMPLEX Solves complex linear system using LU decomposition.

LUDC Replaces array with the LU decomposition.

LUMPROVE Uses LU decomposition to iteratively improve an
approximate solution.

LUSOL Solves a set of linear equations. Use with LUDC.

NORM Computes Euclidean norm of vector or Infinity norm of array.

SVDC Computes Singular Value Decomposition of an array.

SVSOL Solves set of linear equations using back-substitution.

TRACE Computes the trace of an array.

TRISOL Solves tridiagonal systems of linear equations.

Table 16-8: Routines for Solving Simultaneous Linear Equations
Using IDL Linear Systems

480 Chapter 16: Mathematics
Nonlinear Equations

The problem of finding a solution to a system of n nonlinear equations, F(x) = 0, may
be stated as follows:

given F: Rn → Rn, find x* (an element of Rn) such that F(x*) = 0

For example:

x* = [0, 3] or x* = [3, 0]

Note
A solution to a system of nonlinear equations is not necessarily unique.

The most powerful and successful numerical methods for solving systems of
nonlinear equations are loosely based upon a simple two-step iterative method
frequently referred to as Newton’s method. This method begins with an initial guess
and constructs a solution by iteratively approximating the n-dimensional nonlinear
system of equations with an n-by-n linear system of equations.

The first step formulates an n-by-n linear system of equations (Js = – F) where the
coefficient array J is the Jacobian (the array of first partial derivatives of F), s is a
solution vector, and – F is the negative of the nonlinear system of equations. Both J
and – F are evaluated at the current value of the n-element vector x.

J(xk) sk = – F(xk)

The second step uses the solution sk of the linear system as a directional update to the
current approximate solution xk of the nonlinear system of equations. The next
approximate solution xk+1 is a linear combination of the current approximate solution
xk and the directional update sk.

xk+1 = xk + sk

The success of Newton’s method relies primarily on providing an initial guess close
to a solution of the nonlinear system of equations. In practice this proves to be quite
difficult and severely limits the application of this simple two-step method.

IDL provides two algorithms that are designed to overcome the restriction that the
initial guess be close to a solution. These algorithms implement a line search which

F x()
x0 x1 3–+

x0
2

x1
2

9–+
=

Nonlinear Equations Using IDL

Chapter 16: Mathematics 481
checks, and if necessary modifies, the course of the algorithm at each step ensuring
progress toward a solution of the nonlinear system of equations. IDL’s NEWTON
and BROYDEN functions are among a class of algorithms known as quasi-Newton
methods.

The solution of an n-dimensional system of nonlinear equations, F(x) = 0, is often
considered a root of that system. As a one-dimensional counterpart to NEWTON and
BROYDEN, IDL provides the FX_ROOT and FZ_ROOTS functions.

Routines for Solving Nonlinear Equations

Below is a brief description of IDL routines for solving systems of nonlinear
equations. More detailed information is available in the IDL Reference Guide.

BROYDEN Solves nonlinear equations using Broyden’s method.

FX_ROOT Computes real and complex roots of a univariate nonlinear
function using an optimal Müller’s method.

FZ_ROOTS Finds the roots of a complex polynomial using Laguerre’s
method.

NEWTON Solves nonlinear equations using Newton’s method.

Table 16-9: Routines for Solving Nonlinear Equations
Using IDL Nonlinear Equations

482 Chapter 16: Mathematics
Optimization

The problem of finding an unconstrained minimizer of an n-dimensional function, f,
may be stated as follows:

given f: Rn → R, find x* (an element of Rn) such that f(x*) is a minimum of f.

For example:

f (x) = (x0 – 3)4 + (x1 - 2)2

x* = [3, 2]

In minimizing an n-dimensional function f, it is a necessary condition that the
gradient at the minimizer x*, ∇ f(x*), be the zero vector. Mathematically expressing
this condition defines the following system of nonlinear equations.

This relation might suggest that finding a minimizer is equivalent to solving a system
of linear equations based on the gradient. In most cases, however, this is not true. It is
just as likely that a solution, x*, of ∇ f(x)=0 be a maximizer or a local minimizer of f.
Thus the gradient alone does not provide sufficient information in determining the
role of x*.

IDL provides two algorithms that do sufficiently determine the global minimizer of
an n-dimensional function. IDL’s DFPMIN routine is among a class of algorithms
known as variable metric methods and requires a user-supplied analytic gradient of
the function to be minimized. IDL’s POWELL routine implements a direction-set
method that does not require a user-supplied analytic gradient. The utility of the
POWELL routine is evident as the function to be minimized becomes more
complicated and partial derivatives become more difficult to calculate.

f x()∂
x0∂

f x()∂
x1∂

…
f x()∂
xn 1–∂

0

0

…
0

=

Optimization Using IDL

Chapter 16: Mathematics 483
Routines for Optimization

Below is a brief description of IDL routines for optimization. More detailed
information is available in the IDL Reference Guide.

AMOEBA Minimizes a function using downhill simplex method.

CONSTRAINED_MIN Minimizes a function using Generalized Reduced
Gradient Method.

DFPMIN Minimizes a function using Davidon-Fletcher-Powell
method.

POWELL Minimizes a function using the Powell method.

Table 16-10: Optimization Routines in IDL
Using IDL Optimization

484 Chapter 16: Mathematics
Sparse Arrays

The occurrence of zero elements in a large array is both a computational and storage
inconvenience. An array in which a large percentage of elements are zeros is referred
to as being sparse.

Because standard linear algebra techniques are highly inefficient when dealing with
sparse arrays, IDL incorporates a collection of routines designed to handle them
effectively. These routines use the row-indexed sparse storage method, which stores
the array in structure form, as a vector of data and a vector of indices. The length of
each vector is equal to 1 plus the number of diagonal elements of the array plus the
number of off-diagonal elements with an absolute magnitude greater than or equal to
a specified threshold value. Diagonal elements of the array are always retained even
if their absolute magnitude is less than the specified threshold. Sparse array routines
that handle array-vector and array-array multiplication, file input/output, and the
solution of systems of simultaneous linear equations are included.

When considering using IDL’s sparse array routines, remember that the
computational savings gained by working in sparse storage format is at least partially
offset by the need to first convert the arrays to that format. Although an absolute
determination of when to use sparse format is not possible, the example below
demonstrates the time savings when solving a 500 by 500 linear system in which
approximately 50% of the coefficient array’s elements as zeros.

Diagonally-Dominant Array

Example

Create a 500-by-500 element pseudo-random diagonally-dominant floating-point
array in which approximately 50% of the elements as zeros. (In a diagonally-
dominant array, the diagonal element in a given row is greater than the sum of the
absolute values of the non-diagonal elements in that row.)

N = 500L
A = RANDOMN(SEED, N, N)*10
; Set elements with absolute magnitude greater than or
; equal to eight to zero:
I = WHERE(ABS(A) GE 8)
A[I] = 0.0
; Set each diagonal element to the absolute sum of
; its row elements plus 1.0:
diag = TOTAL(ABS(A), 1)
A(INDGEN(N) * (N+1)) = diag + 1.0
; Create a right-hand side vector, b, in which 40% of
Sparse Arrays Using IDL

Chapter 16: Mathematics 485
; the elements are ones and 60% are twos.
B = [REPLICATE(1.0, 0.4*N), REPLICATE(2.0, 0.6*N)]

We now calculate a solution to this system using two different methods, measuring
the time elapsed. First, we compute the solution using the iterative biconjugate
gradient method and a sparse array storage format. Note that we include everything
between the start and stop timer commands as a single operation, so that only
computation time (as opposed to typing time) is recorded.

;Begin with an initial guess:
X = REPLICATE(1.0, N_ELEMENTS(B))
;Start the timer:
start = SYSTIME(1) & $
;Solve the system:
result1 = LINBCG(SPRSIN(A), B, X) & $
;Stop the timer.
stop = SYSTIME(1)
;Print the time taken, in seconds:
PRINT, 'Time for Iterative Biconjugate Gradient:', stop-start

IDL prints:

Time for Iterative Biconjugate Gradient 1.1259040

Remember that your result will depend on your hardware configuration.

Next, we compute the solution using LU decomposition.

;Start the timer:
start = SYSTIME(1) & $
;Compute the LU decomposition of A:
LUDC, A, index & $
;Compute the solution:
result2 = LUSOL(A, index, B) & $
;Stop the timer:
stop = SYSTIME(1)
;Print the time taken, in seconds:
PRINT, 'Time for LU Decomposition:', stop-start

IDL prints:

Time for LU decomposition 14.871168

Finally, we can compare the absolute error between result1 and result2. The
following commands will print the indices of any elements of the two results that
differ by more than 1.0 × 10-5, or a –1 if the two results are identical to within five
decimal places.

error = ABS(result1-result2)
PRINT, WHERE(error GT 1.0e-5)
Using IDL Sparse Arrays

486 Chapter 16: Mathematics
IDL prints:

-1

See the documentation for the WTN function for an example using IDL’s sparse
array functions with image data.

Note
The times shown here were recorded on a DEC 3000 Alpha workstation running
OSF/1; they are shown as examples only. Your times will depend on your specific
computing platform.

Routines for Handling Sparse Arrays

Below is a brief description of IDL routines for handling sparse arrays. More detailed
information is available in the IDL Reference Guide. Note that SPRSIN must be used
to convert to sparse storage format before the other routines can be used.

FULSTR Restores a sparse matrix to full storage mode.

LINBCG Solves a set of sparse linear equations using the iterative
biconjugate gradient method.

READ_SPR Reads a row-indexed sparse matrix from a file.

SPRSAB Performs matrix multiplication on sparse matrices.

SPRSAX Multiplies sparse matrix by a vector.

SPRSIN Converts matrix to row-index sparse matrix.

SPRSTP Constructs the transpose of a sparse matrix.

WRITE_SPR Writes row-indexed sparse array structure to a file.

Table 16-11: Sparse Array Routines in IDL
Sparse Arrays Using IDL

Chapter 16: Mathematics 487
Time-Series Analysis

A time-series is a sequential collection of data observations indexed over time. In
most cases, the observed data is continuous and is recorded at a discrete and finite set
of equally-spaced points. An n-element time-series is denoted as x = (x0, x1, x2, ... ,
xn–1), where the time-indexed distance between any two successive observations is
referred to as the sampling interval.

A widely held theory assumes that a time-series is comprised of four components:

• A trend or long term movement.

• A cyclical fluctuation about the trend.

• A pronounced seasonal effect.

• A residual, irregular, or random effect.

Collectively, these components make the analysis of a time-series a far more
challenging task than just fitting a linear or nonlinear regression model. Adjacent
observations are unlikely to be independent of one another. Clusters of observations
are frequently correlated with increasing strength as the time intervals between them
become shorter. Often the analysis is a multi-step process involving graphical and
numerical methods.

The first step in the analysis of a time-series is the transformation to stationary series.
A stationary series exhibits statistical properties that are unchanged as the period of
observation is moved forward or backward in time. Specifically, the mean and
variance of a stationary time-series remain fixed in time. The sample autocorrelation
function is a commonly used tool in determining the stationarity of a time-series. The
autocorrelation of a time-series measures the dependence between observations as a
function of their time differences or lag. A plot of the sample autocorrelation
coefficients against corresponding lags can be very helpful in determining the
stationarity of a time-series.

For example, suppose the IDL variable X contains time-series data:

X = [5.44, 6.38, 5.43, 5.22, 5.28, $
5.21, 5.23, 4.33, 5.58, 6.18, $
6.16, 6.07, 6.56, 5.93, 5.70, $
5.36, 5.17, 5.35, 5.61, 5.83, $
5.29, 5.58, 4.77, 5.17, 5.33]

The following IDL commands plot both the time-series data and the sample
autocorrelation versus the lags.
Using IDL Time-Series Analysis

488 Chapter 16: Mathematics
;Set the plotting window to hold two plots:
!P.MULTI=[0,1,2]
;Plot the data:
PLOT, X

Compute the sample autocorrelation function for time lagged values 0 – 20 and plot.

lag = INDGEN(21)
result = A_CORRELATE(X, lag)
PLOT, lag, result
;Add a reference line at zero:
PLOTS, [0,20], [0,0], /DATA
;Set the plotting window back to a single plot:
!P.MULTI=0

The following figure shows the resulting graph.

Nonstationary components of a time-series may be eliminated in a variety of ways.
Two frequently used methods are known as moving averages and forward

Figure 16-3: The top graph plots time-series data. The bottom graph plots the
autocorrelation of that data versus the lag. Because the time-series has a
significant autocorrelation up to a lag of seven, it must be considered non-

stationary.
Time-Series Analysis Using IDL

Chapter 16: Mathematics 489
differencing. The method of moving averages dampens fluctuations in a time-series
by taking successive averages of groups of observations. Each successive
overlapping sequence of k observations in the series is replaced by the mean of that
sequence. The method of forward differencing replaces each time-series observation
with the difference of the current observation and its adjacent observation one step
forward in time. Differencing may be computed recursively to eliminate more
complex nonstationary components.

Once a time-series has been transformed to stationarity, it may be modeled using an
autoregressive process. An autoregressive process expresses the current observation,
xt, as a combination of past time-series values and residual white noise. The simplest
case is known as a first order autoregressive model and is expressed as

xt = φxt–1 + ωt

The coefficient φ is estimated using the time-series data. The general autoregressive
model of order p is expressed as

xt = φ1xt–1 +φ2xt–2 + ... + φpxt–p + ωt

Modeling a stationary time-series as a p-th order autoregressive process allows the
extrapolation of data for future values of time. This process is know as forecasting.

Routines for Time-Series Analysis

Below is a brief description of IDL routines for time-series analysis. More detailed
information is available in the IDL Reference Guide.

A_CORRELATE Computes autocorrelation.

C_CORRELATE Computes cross correlation.

SMOOTH Smooths with a boxcar average.

TS_COEF Computes the coefficients for autoregressive time-series.

TS_DIFF Computes the forward differences of a time-series.

TS_FCAST Computes future or past values of a stationary time-series.

TS_SMOOTH Computes moving averages of a time-series.

Table 16-12: Time-Series Analysis Routines in IDL
Using IDL Time-Series Analysis

490 Chapter 16: Mathematics
Multivariate Analysis

IDL provides a number of tools for analyzing multivariate data. These tools are
broadly grouped into two categories: Cluster Analysis and Principal Components
Analysis.

Cluster Analysis

Cluster Analysis attempts to construct a sensible and informative classification of an
initially unclassified sample population using a set of common variables for each
individual. The clusters are constructed so as to group samples with the similar
features, based upon a set of variables. The samples (contained in the rows of an
input array) are each assigned a cluster number based upon the values of their
corresponding variables (contained in the columns of an input array).

In computing a cluster analysis, a predetermined number of cluster centers are
formed and then each sample is assigned to the unique cluster which minimizes a
distance criterion based upon the variables of the data. Given an m-column, n-row
array, IDL’s CLUST_WTS and CLUSTER functions compute n cluster centers and n
clusters, respectively. Conceivably, some clusters will contain multiple samples while
other clusters will contain none. The choice of clusters is arbitrary; in general,
however, the user will want to specify a number less than the default (the number of
rows in the input array). The cluster number (the number that identifies the cluster
group) assigned to a particular sample or group of samples is not necessarily unique.

It is possible that not all variables play an equal role in the classification process. In
this situation, greater or lesser importance may be given to each variable using the
VARIABLE_WTS keyword to the CLUST_WTS function. The default behavior is to
assume all variables contained in the data array are of equal importance.

Under certain circumstances, a classification of variables may be desired. The
CLUST_WTS and CLUSTER functions provide this functionality by first
transposing the m-column, n-row input array using the TRANSPOSE function and
then interchanging the roles of variables and samples.

Example of Cluster Analysis

Define an array with 5 variables (columns) and 9 samples (rows):

array = [[99, 79, 63, 87, 249], $
[67, 41, 36, 51, 114], $
[67, 41, 36, 51, 114], $
[94, 191, 160, 173, 124], $
[42, 108, 37, 51, 41], $
Multivariate Analysis Using IDL

Chapter 16: Mathematics 491
[67, 41, 36, 51, 114], $
[94, 191, 160, 173, 124], $
[99, 79, 63, 87, 249], $
[67, 41, 36, 51, 114]]

; Compute the cluster weights with four cluster centers:
weights = CLUST_WTS(array, N_CLUSTERS = 4)
; Compute the cluster assignments, for each sample,
; into one of four clusters:
result = CLUSTER(array, weights, N_CLUSTERS = 4)
; Display the cluster assignment and corresponding sample (row):
FOR k = 0, 8 DO $

PRINT, result[k], array[*, k]

IDL prints:

1 99 79 63 87 249
3 67 41 36 51 114
3 67 41 36 51 114
0 94 191 160 173 124
2 42 108 37 51 41
3 67 41 36 51 114
0 94 191 160 173 124
1 99 79 63 87 249
3 67 41 36 51 114

Samples 0 and 7 contain identical data and are assigned to cluster #1. Samples 1, 2, 5,
and 8 contain identical data and are assigned to cluster #3. Samples 3 and 6 contain
identical data and are assigned to cluster #0. Sample 4 is unique and is assigned to
cluster #2.

If this example is run several times, each time computing new cluster weights, it is
possible that the cluster number assigned to each grouping of samples may change.

Principal Components Analysis

Principal components analysis is a mathematical technique which describes a
multivariate set of data using derived variables. The derived variables are formulated
using specific linear combinations of the original variables. The derived variables are
uncorrelated and are computed in decreasing order of importance; the first variable
accounts for as much as possible of the variation in the original data, the second
variable accounts for the second largest portion of the variation in the original data,
and so on. Principal components analysis attempts to construct a small set of derived
variables which summarize the original data, thereby reducing the dimensionality of
the original data.

The principal components of a multivariate set of data are computed from the
eigenvalues and eigenvectors of either the sample correlation or sample covariance
Using IDL Multivariate Analysis

492 Chapter 16: Mathematics
matrix. If the variables of the multivariate data are measured in widely differing units
(large variations in magnitude), it is usually best to use the sample correlation matrix
in computing the principal components; this is the default method used in IDL’s
PCOMP function.

Another alternative is to standardize the variables of the multivariate data prior to
computing principal components. Standardizing the variables essentially makes them
all equally important by creating new variables that each have a mean of zero and a
variance of one. Proceeding in this way allows the principal components to be
computed from the sample covariance matrix. IDL’s PCOMP function includes
COVARIANCE and STANDARDIZE keywords to provide this functionality.

For example, suppose that we wish to restate the following data using its principal
components. There are three variables, each consisting of five samples.

We compute the principal components (the coefficients of the derived variables) to 2
decimal accuracy and store them by row in the following array.

The derived variables {z1, z2, z3} are then computed as follows:

Var 1 Var 2 Var 3

Sample 1 2.0 1.0 3.0

Sample 2 4.0 2.0 3.0

Sample 3 4.0 1.0 0.0

Sample 4 2.0 3.0 3.0

Sample 5 5.0 1.0 9.0

Table 16-13: Data for Principal Component Analysis

0.87 0.70– 0.69

0.01 0.64– 0.66–

0.49 0.32 0.30–
Multivariate Analysis Using IDL

Chapter 16: Mathematics 493
In this example, analysis shows that the derived variable z1 accounts for 57.3% of the
total variance of the original data, the derived variable z2 accounts for 28.2% of the
total variance of the original data, and the derived variable z3 accounts for 14.5% of
the total variance of the original data.

Example of Derived Variables from Principal Components

The following example constructs an appropriate set of derived variables, based upon
the principal components of the original data, which may be used to reduce the
dimensionality of the data. The data consist of four variables, each containing of
twenty samples.

; Define an array with 4 variables and 20 samples:
data = [[19.5, 43.1, 29.1, 11.9], $

[24.7, 49.8, 28.2, 22.8], $
[30.7, 51.9, 37.0, 18.7], $
[29.8, 54.3, 31.1, 20.1], $
[19.1, 42.2, 30.9, 12.9], $

z1 0.87()

2.0

4.0

4.0

2.0

5.0

0.70–()

1.0

2.0

1.0

3.0

1.0

0.69()

3.0

3.0

0.0

3.0

9.0

+ +=

z2 0.01()

2.0

4.0

4.0

2.0

5.0

0.64–()

1.0

2.0

1.0

3.0

1.0

0.66–()

3.0

3.0

0.0

3.0

9.0

+ +=

z3 0.49()

2.0

4.0

4.0

2.0

5.0

0.32()

1.0

2.0

1.0

3.0

1.0

0.30–()

3.0

3.0

0.0

3.0

9.0

+ +=
Using IDL Multivariate Analysis

494 Chapter 16: Mathematics
[25.6, 53.9, 23.7, 21.7], $
[31.4, 58.5, 27.6, 27.1], $
[27.9, 52.1, 30.6, 25.4], $
[22.1, 49.9, 23.2, 21.3], $
[25.5, 53.5, 24.8, 19.3], $
[31.1, 56.6, 30.0, 25.4], $
[30.4, 56.7, 28.3, 27.2], $
[18.7, 46.5, 23.0, 11.7], $
[19.7, 44.2, 28.6, 17.8], $
[14.6, 42.7, 21.3, 12.8], $
[29.5, 54.4, 30.1, 23.9], $
[27.7, 55.3, 25.7, 22.6], $
[30.2, 58.6, 24.6, 25.4], $
[22.7, 48.2, 27.1, 14.8], $
[25.2, 51.0, 27.5, 21.1]]

The variables that will contain the values returned by the COEFFICIENTS,
EIGENVALUES, and VARIANCES keywords to the PCOMP routine must be
initialized as nonzero values prior to calling PCOMP.

coef = 1 & eval = 1 & var = 1
; Compute the derived variables based upon
; the principal components.
result = PCOMP(data, COEFFICIENTS = coef, $

EIGENVALUES = eval, VARIANCES = var)
; Display the array of derived variables:
PRINT, result, FORMAT = '(4(f5.1, 2x))'

IDL prints:

81.4 15.5 -5.5 0.5
102.7 11.1 -4.1 0.6
109.9 20.3 -6.2 0.5
110.5 13.8 -6.3 0.6
81.8 17.1 -4.9 0.6

104.8 6.2 -5.4 0.6
121.3 8.1 -5.2 0.6
111.3 12.6 -4.0 0.6
97.0 6.4 -4.4 0.6

102.5 7.8 -6.1 0.6
118.5 11.2 -5.3 0.6
118.9 9.1 -4.7 0.6
81.5 8.8 -6.3 0.6
88.0 13.4 -3.9 0.6
74.3 7.5 -4.8 0.6

113.4 12.0 -5.1 0.6
109.7 7.7 -5.6 0.6
117.5 5.5 -5.7 0.6
91.4 12.0 -6.1 0.6

102.5 10.6 -4.9 0.6
Multivariate Analysis Using IDL

Chapter 16: Mathematics 495
Display the percentage of total variance for each derived variable:

PRINT, var

IDL prints:

0.712422
0.250319
0.0370950
0.000164269

Display the percentage of variance for the first two derived variables; the first two
columns of the resulting array above.

PRINT, TOTAL(var[0:1])

IDL prints:

0.962741

This indicates that the first two derived variables (the first two columns of the
resulting array) account for 96.3% of the total variance of the original data, and thus
could be used to summarize the original data.

Routines for Multivariate Analysis

Below is a brief description of IDL routines for multivariate analysis. More detailed
information is available in the IDL Reference Guide.

CLUST_WTS Computes the cluster weights of an array for cluster
analysis.

CLUSTER Performs cluster analysis.

CTI_TEST Performs chi-square goodness-of-fit test.

KW_TEST Performs Kruskal-Wallis H-test.

M_CORRELATE Computes multiple correlation coefficient.

P_CORRELATE Computes partial correlation coefficient.

PCOMP Computes principal components/derived variables.

STANDARDIZE Computes standardized variables.

Table 16-14: Multivariate Analysis Routines in IDL
Using IDL Multivariate Analysis

496 Chapter 16: Mathematics
References

Accuracy and Floating Point Operations

Burden, Richard L., J. Douglas Faires, and Albert C. Reynolds. Numerical Analysis.
Boston: PWS Publishing, 1993. ISBN 0-534-93219-3

Stoer, J., and R. Bulirsch. Introduction to Numerical Analysis. New York: Springer-
Verlag, 1980. ISBN 0-387-90420-4

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Correlation Analysis

Harnet, Donald L. Introduction to Statistical Methods. Reading, Massachusetts:
Addison-Wesley, 1975. ISBN 0-201-02752-6

Neter, John., William Wasserman, and G.A. Whitmore. Applied Statistics. Newton,
Massachusetts: Allyn and Bacon, 1988. ISBN 0-205-10328-6

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Curve and Surface Fitting

Bevington, Philip R. Data Reduction and Error Analysis for the Physical Sciences.
New York: McGraw-Hill, 1969.

Lancaster, Peter and Kestutis Salkauskas. Curve and Surface Fitting (An
Introduction). San Diego: Academic Press, 1986. ISBN 0-124-36060-0

Eigenvalues and Eigenvectors

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Strang, Gilbert. Linear Algebra and Its Applications. San Diego: Harcourt Brace
Jovanovich, 1988. ISBN 0-155-551005-3

Gridding and Interpolation

Lancaster, Peter and Kestutis Salkauskas. Curve and Surface Fitting (An
Introduction). San Diego: Academic Press, 1986. ISBN 0-124-36060-0
References Using IDL

Chapter 16: Mathematics 497
Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Hypothesis Testing

Harnett, Donald H. Introduction to Statistical Methods. Reading, Massachusetts:
Addison-Wesley, 1975. ISBN 0-201-02752-6

Kraft, Charles H. and Constance Van Eeden. A Nonparametric Introduction to
Statistics. New York: Macmillan, 1968.

Sprent, Peter. Applied Nonparametric Statistical Methods. London: Chapman and
Hall, 1989. ISBN 0-412-30600-X

Integration

Chapra, Steven C. and Raymond P. Canale. Numerical Methods for Engineers. New
York: McGraw-Hill, 1988. ISBN 0-070-79984-9

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Linear Systems

Golub, Gene H. and Van Loan, Charles F. Matrix Computations. Baltimore: Johns
Hopkins University Press, 1989. ISBN 0-8018-3772-3

Kreyszig, Erwin. Advanced Engineering Mathematics. New York: Wiley & Sons,
Inc., 1993. ISBN 0-471-55380-8

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Strang, Gilbert. Linear Algebra and Its Applications. San Diego: Harcourt Brace
Jovanovich, 1988. ISBN 0-155-551005-3

Nonlinear Equations

Dennis, J.E. Jr. and Robert B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall, 1983.
ISBN 0-136-27216-9

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5
Using IDL References

498 Chapter 16: Mathematics
Optimization

Dennis, J.E. Jr. and Robert B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall, 1983.
ISBN 0-136-27216-9

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Sparse Arrays

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Time-Series Analysis

Chatfield, C. The Analysis of Time Series. London: Chapman and Hall, 1975. ISBN
0-412-31820-2

Neter, John., William Wasserman, and G.A. Whitmore. Applied Statistics. Newton,
Massachusetts: Allyn and Bacon, 1988. ISBN 0-205-10328-6

Multivariate Analysis

Jackson, Barbara Bund. Multivariate Data Analysis. Homewood, Illinois: R.D. Irwin,
1983. ISBN 0-256-02848-6

Everitt, Brian S. Cluster Analysis. New York: Halsted Press, 1993. ISBN 0-470-
22043-0

Kachigan, Sam Kash. Multivariate Statistical Analysis. New York: Radius Press,
1991. ISBN 0-942154-91-6
References Using IDL

Part IV: Object
Graphics

Chapter 17:

Object Graphics
This chapter discusses the difference between IDL Direct Graphics and IDL Object Graphics, and
provides an overview of the IDL Object Graphics classes.
Overview . 502
Direct versus Object Graphics 504
How to Use Object Graphics 506
Overview of Object Graphics Classes 508
Container Objects 510
Structure Objects . 511
Atomic Graphic Objects 512

Composite Objects 514
Attribute Objects . 515
Helper Objects . 516
Destination Objects 517
File Format Objects 518
Properties of Objects 519
Undocumented Graphic Object Classes . . 521
Using IDL 501

502 Chapter 17: Object Graphics
Overview

The IDL Object Graphics system is a collection of pre-defined object classes, each of
which is designed to encapsulate a particular visual representation. Actions (such as
the modification of attributes, or data picking) may be performed on instances of
these object classes by calling corresponding pre-defined methods. These objects are
designed for building complex three-dimensional data visualizations.

For example, the IDLgrAxis object provides an encapsulation of all of the
components associated with a graphical representation of an axis. One of the actions
that can be performed on an axis is retrieving the current value of one or more of its
attributes (such as its color, tick values, or data range). This action may be performed
via the IDLgrAxis::GetProperty method. A complete listing of the types of objects
included in the Object Graphics system are described beginning in “Overview of
Object Graphics Classes” on page 508.

Object Graphics should be thought of as a collection of building blocks. In order to
display something on the screen, the user selects the appropriate set of blocks and
puts them together so that as a group they provide a visual result. In this respect,
Object Graphics are quite different than Direct Graphics. A single line of code is
unlikely to produce a complete visualization. Furthermore, a basic understanding of
the IDL object system is required (for instance, how to create an object, how to call a
method, how to destroy an object, etc.). Because of the level at which these objects
are presented, Object Graphics are aimed at application programmers rather than
command line users.

Object Graphics do not interact in any way with the system variables (such as !P, !X,
!Y, and !Z). Each graphic object is intended to encapsulate all of the information
required to fully describe itself. Reliance on external structures is not condoned. The
advantage of this approach is that once an object is created, it will always behave in
the same way even if the system state is modified by another program, or if the object
is moved to another user’s IDL session, where the system state may have been
customized in a different way than the state in which the object was originally
defined.

Object Graphics are designed for building interactive three-dimensional visualization
applications. Direct manipulation tools (such as the Trackball object) are provided to
aid the application developer. Selection and data picking are also built in, so the
developer can spend less time working out data projection issues and more time
focusing on domain specific data analysis and visualization features.
Overview Using IDL

Chapter 17: Object Graphics 503
Over time, Research Systems, Inc., will continue to build higher-level applications
with these objects, applications that are suitable for users who prefer not to become
programmers to interact with their data. The LIVE_tools are good examples of
currently available applications built using Object Graphics. For more information,
see LIVE_Tools in the IDL Reference Guide.

Additional examples based on Object Graphics can be found in the IDL demo.
Using IDL Overview

504 Chapter 17: Object Graphics
Direct versus Object Graphics

Beginning with IDL version 5.0, IDL supports two distinct graphics modes: Direct
Graphics and Object Graphics. Direct Graphics rely on the concept of a current
graphics device; IDL commands like PLOT or SURFACE create images directly on
the current graphics device. Object Graphics use an object-oriented programmers’
interface to create graphic objects, which must then be drawn, explicitly, to a
destination of the programmers choosing.

IDL Direct Graphics

If you have used versions of IDL prior to version 5.0, you are already familiar with
IDL Direct Graphics. The salient features of Direct Graphics are:

• Direct Graphics use a graphics device (‘X’ for X-windows systems displays,
‘WIN’ for Microsoft Windows displays, ‘MAC’ for Macintosh displays, ‘PS’
for PostScript files, etc.). You switch between graphics devices using the
SET_PLOT command, and control the features of the current graphics device
using the DEVICE command.

• IDL commands that existed in IDL 4.0 use Direct Graphics. Commands like
PLOT, SURFACE, XYOUTS, MAP_SET, etc. all draw their output directly on
the current graphics device.

• Once a direct-mode graphic is drawn to the graphics device, it cannot be
altered or re-used. This means that if you wish to re-create the graphic on a
different device, you must re-issue the IDL commands to create the graphic.

• When you add a new item to an existing direct-mode graphic (using a routine
like OPLOT or XYOUTS), the new item is drawn in front of the existing
items.

Documentation for IDL Direct Graphics routines is found in the following volumes
of the IDL Documentation set: Using IDL, Building IDL Applications, and the IDL
Reference Guide.

IDL Object Graphics

Versions of IDL beginning with version 5.0 include Object Graphics in addition to
Direct Graphics. The salient features of Object Graphics are:

• Object graphics are rendered in three dimensions. Rendering implies many
operations not needed when drawing Direct Graphics, including calculation of
normal vectors for lines and surfaces, lighting considerations, and general
Direct versus Object Graphics Using IDL

Chapter 17: Object Graphics 505
object overhead. As a result, the time needed to render a given object—a
surface, for example—will often be longer than the time taken to draw the
analogous image in Direct Graphics.

• Object graphics are device independent. There is no concept of a current
graphics device when using object-mode graphics; any graphics object can be
displayed on any physical device for which a destination object can be created.

• Object graphics are object oriented. Graphic objects are meant to be created
and re-used; you may create a set of graphic objects, modify their attributes,
draw them to a window on your computer screen, modify their attributes again,
then draw them to a printer device without reissuing all of the IDL commands
used to create the objects. Graphics objects also encapsulate functionality; this
means that individual objects include method routines that provide
functionality specific to the individual object.

• Object Graphics use a programmers interface. Unlike Direct Graphics, which
are well suited for both programming and interactive, ad hoc use, Object
Graphics are designed to be used in programs that are compiled and run. While
it is still possible to create and use graphics objects directly from the IDL
command line, the syntax and naming conventions make it more convenient to
build a program off line than to create graphics objects on the fly.

• Because Object Graphics persist in memory, there is a greater need for the
programmer to be cognizant of memory issues and memory leakage. Efficient
design—remembering to destroy unused object references and cleaning up—
will avert most problems, but even the best designs can be memory-intensive if
large numbers of graphic objects (or large datasets) are involved.

Explanatory material on IDL’s object system is contained in Chapter 20, “Object
Basics” in the Building IDL Applications manual. For reference material describing
IDL’s object classes, see Appendix A, “IDL Object Class & Method Reference” of
the IDL Reference Guide.
Using IDL Direct versus Object Graphics

506 Chapter 17: Object Graphics
How to Use Object Graphics

All Object Graphics applications require at least two basic building blocks. These
include:

• A destination object - the device (such as a window, memory buffer, file,
clipboard, or printer) to which the visualization is to be rendered. For more
information, see “Destination Objects” on page 517

• A view object - the viewport rectangle (within the destination) within which
the rendering is to appear (as well as how data should be projected into that
rectangle).

For example:

;Create a destination object, in this case a window:
oWindow = OBJ_NEW('IDLgrWindow')
;Create a viewport that fills the entire window:
oView = OBJ_NEW('IDLgrView')
;Draw the view within the window:
OWindow->Draw, oView

By themselves, a window and a single view are not particularly enlightening, but you
will find that these two types of objects are utilized by all Object Graphics
applications. To change an attribute of an object, you do not have to create a new
instance of that object. Instead, use the SetProperty method on the original object to
modify the value of the attribute.

For example, to change the color of the view to gray:

;Set the color property of the view:
OView->SetProperty, COLOR=[60,60,60]
;Redraw:
OWindow->Draw, oView

If more than one view is to be drawn to the destination, then an additional object is
required:

• A scene object - a container of views

For example:

; Create a scene and add our original view to it:
OScene = OBJ_NEW(’IDLgrScene’)
oScene->Add, oView
; Modify our original view so that it covers
; the upper left quadrant of the window.
OView->SetProperty, LOCATION=[0.0,0.5], DIMENSIONS=[0.5,0.5], $
How to Use Object Graphics Using IDL

Chapter 17: Object Graphics 507
UNITS=3
; Create and add a second red view that covers
; the right half of the window.
OView2 = OBJ_NEW(’IDLgrView’, LOCATION=[0.5,0.0], $

DIMENSIONS=[0.5,1.0], UNITS=3,COLOR=[255,0,0])
OScene->Add, oView2
; Now draw the scene, rather than the view, to the window:
OWindow->Draw, oScene

In the examples so far, the views have been empty canvases. For data visualization
applications, these views will need some graphical content. To draw visual
representations within the views, two additional types of objects are required:

• A model object - a transformation node

• An atomic graphic object - a graphical representation of data (such as an axis,
plot line, or surface mesh). For more information, see “Atomic Graphic
Objects” on page 512.

For example, to include a text label within a view:

; Create a model and add it to the original view:
oModel = OBJ_NEW('IDLgrModel')
oView->Add, oModel
; Create a text object and add it to the model:
oText = OBJ_NEW('IDLgrText','Hello World',ALIGNMENT=0.5)
oModel->Add, oText
; Redraw the scene:
OWindow->Draw, oScene

Notice that the scene, views, model, and text are all combined together into a self-
contained hierarchy. It is the overall hierarchy that is drawn to the destination object.

The transformation associated with the model can be modified to impact the text it
contains. For example:

; Rotate by 90 degrees about the Z-axis:
oModel->Rotate, [0,0,1], 90
; Redraw:
OWindow->Draw, oScene

When the objects are no longer required, they need to be destroyed. Destination
objects must be destroyed separately, but the graphic hierarchies can be destroyed in
full by simply destroying the root of the hierarchy. For example:

OBJ_DESTROY, oWindow
OBJ_DESTROY, oScene

In this example, the destruction of the scene will cause the destruction of all of its
children (including the views, model, and text).
Using IDL How to Use Object Graphics

508 Chapter 17: Object Graphics
Overview of Object Graphics Classes

The following sections provide an overview of the different types of objects included
in the IDL Object Graphics class library. In order to describe the attributes of the IDL
Object Graphics classes, we have grouped the objects into functional categories:
Container Objects, Structure Objects, Atomic Graphic Objects, Composite Objects,
Attribute Objects, Helper Objects, Destination Objects, and File Format Objects.

Note
These category names are purely descriptive; for example, structure objects contain
the IDLgrModel, IDLgrScene, and IDLgrView classes, but no class named
structure. There is one exception to this rule: the container objects category which
includes the IDL_Container class.

This chapter does not describe the relationships between object classes. See Chapter
18, “The Graphics Object Hierarchy” for a discussion of the object tree.

Naming Conventions

In general, object classes shipped with IDL have names of the form:

IDLxxYyyy

where xx represents the broad functional grouping (gr for graphics objects, db for
database objects, and an for analysis, for example). Yyyy is the class name itself
(such as Axis or Surface). Object classes that are useful in more than one
functional context (container objects, for example) omit the functional grouping code
entirely (IDL_Container). All object classes shipped with IDL are prepended with the
letters IDL—we strongly suggest that you do not use this prefix when writing your
own object classes, as we will continue to add new object classes using this
convention.

The typographical convention used to describe IDL objects is slightly different from
that used for non-object functions and procedures. Whereas non-object procedures
are presented in upper case letters, object classes and methods use mixed case. For
example, we refer to the PLOT routine, but to the IDLgrPlot object. Method names
are also presented in mixed case (IDLgrAxis::GetProperty).

Common Methods

In addition to their own specific methods, all object classes shipped with IDL except
for the IDL_Container class have four methods in common: Cleanup, Init,
Overview of Object Graphics Classes Using IDL

Chapter 17: Object Graphics 509
GetProperty, and SetProperty. The Cleanup and Init methods are life-cycle methods,
and cannot be called directly except within a subclass’ Cleanup or Init method. (See
“The Object Lifecycle” in Chapter 20 of the Building IDL Applications manual.) The
GetProperty and SetProperty methods allow you to inspect (get) or change (set) the
various properties associated with a given object. Properties associated with graphics
objects include things like color, location, line style, or data.
Using IDL Overview of Object Graphics Classes

510 Chapter 17: Object Graphics
Container Objects

IDL’s container object, realized in the IDL_Container class, provides a way to group
disparate IDL objects into single object. Container objects provide a convenient way
to move or destroy groups of objects; when a container is destroyed, its Cleanup
method automatically calls the Cleanup methods of all the objects in the container
and destroys them as well.

See IDL_Container for details.
Container Objects Using IDL

Chapter 17: Object Graphics 511
Structure Objects

Structure objects create a hierarchy of graphic objects—an object tree. Structure
objects also contain the information necessary to transform graphics objects in space.
Building an object tree allows you to manipulate groups of graphic objects easily by
transforming a single IDLgrModel object to which members of the group belong.
(See Chapter 18, “The Graphics Object Hierarchy” for a discussion of the object
tree.)

Model

Objects of the IDLgrModel class serve as containers for individual graphic objects
(plot lines, axes, text, etc.) and for other model objects. Model objects include a
three-dimensional transformation matrix that describes how the model and all of its
components are positioned in space. Altering the model’s transformation matrix
changes the position and orientation of any objects the model contains. If a model
object contains another model object, the contained model is positioned according to
both its own transformation matrix and that of its container.

See IDLgrModel in the IDL Reference Guide for further details.

View

Objects of the IDLgrView class serve as containers for model objects. A view object
can be supplied as the argument to a Draw method.

See IDLgrView in the IDL Reference Guide for further details.

Viewgroup

Objects of the IDLgrViewgroup class serve as containers for views. A viewgroup
object can be supplied as the argument to a Draw method.

See IDLgrViewgroup in the IDL Reference Guide for further details.

Scene

Objects of the IDLgrScene class serve as containers for view and view group objects.
A scene object can be supplied as the argument to a Draw method.

See IDLgrScene in the IDL Reference Guide for further details.
Using IDL Structure Objects

512 Chapter 17: Object Graphics
Atomic Graphic Objects

Atomic Graphic Objects, or graphics atoms, are the low-level objects used to create
images. Graphics atoms have attributes such as size, color, width, or associated color
palette. Graphics atoms do not include a transformation matrix and do not contain
other objects.

Axis

Objects of the IDLgrAxis class are individual axes. One axis object is required for
each axis line to be rendered.

See IDLgrAxis in the IDL Reference Guide for further details.

Contour

Objects of the IDLgrContour class are lines representing contour information plotted
from user data.

See IDLgrContour in the IDL Reference Guide for further details.

Image

Objects of the IDLgrImage class are two-dimensional arrays of data with an
associated mapping of the data values to pixel values.

See IDLgrImage in the IDL Reference Guide for further details.

Light

Objects of the IDLgrLight class are light sources by which atomic graphic objects are
illuminated. Light objects are not actually rendered, but are included as graphics
atoms (meaning they must be contained in a model object) so that they can be
positioned and transformed along with the graphic objects they illuminate. If no light
object is included in a particular view, default lighting is supplied.

See IDLgrLight in the IDL Reference Guide for further details.

Plot

Objects of the IDLgrPlot class are individual plot lines, created from a user-supplied
vector of dependent data values (and, optionally, a vector of independent data
values). Plot objects do not include axes.
Atomic Graphic Objects Using IDL

Chapter 17: Object Graphics 513
See IDLgrPlot in the IDL Reference Guide for further details.

Polygon

Objects of the IDLgrPolygon class are individual polygons, created from a user-
supplied array of data values.

See IDLgrPolygon in the IDL Reference Guide for further details.

Polyline

Objects of the IDLgrPolyline class are individual polylines, created from a user-
supplied array of data points. Locations of the data points supplied are connected by a
single line.

See IDLgrPolyline in the IDL Reference Guide for further details.

Surface

Objects of the IDLgrSurface class are individual three-dimensional surfaces, created
from a user-supplied array of data values.

See IDLgrSurface in the IDL Reference Guide for further details.

Text

Objects of the IDLgrText class are text strings that can be positioned within the
rendering area.

See IDLgrText in the IDL Reference Guide for further details.

Volume

Objects of the IDLgrVolume class map a three-dimensional array of data values to a
three-dimensional array of voxel colors, which, when drawn, are projected to two
dimensions.

See IDLgrVolume in the IDL Reference Guide for further details.
Using IDL Atomic Graphic Objects

514 Chapter 17: Object Graphics
Composite Objects

A composite object is an encapsulation of a group of other objects that together
provide a commonly useful graphical representation.

Colorbar

Objects of the IDLgrColorbar class are annotations that provide information about
the data values associated with colors used in a visualization.

See IDLgrColorbar in the IDL Reference Guide for further details.

Legend

Objects of the IDLgrLegend class are annotations that provide information about the
meaning of individual data items or lines in a visualization.

See IDLgrLegend in the IDL Reference Guide for further details.
Composite Objects Using IDL

Chapter 17: Object Graphics 515
Attribute Objects

Attribute objects are used when rendering graphic objects, but exist outside the
hierarchy of Model-View-Scene objects that are actually rendered.

Font

Objects of the IDLgrFont class define the typeface, size, weight, and style of text
used when rendering a text object.

See IDLgrFont in the IDL Reference Guide for further details.

Palette

Objects of the IDLgrPalette class define a color lookup table that maps indices to red,
green, and blue values.

See IDLgrPalette in the IDL Reference Guide for further details.

Pattern

Objects of the IDLgrPattern class defines which pixels are filled and which are left
blank when a graphic object is filled.

See IDLgrPattern in the IDL Reference Guide for further details.

Symbol

Objects of the IDLgrSymbol class define graphical element that can be used when
plotting data.

See IDLgrSymbol in the IDL Reference Guide for further details.
Using IDL Attribute Objects

516 Chapter 17: Object Graphics
Helper Objects

Helper objects alter data in useful ways or provide other services. They exist outside
the hierarchy of Model-View-Scene objects that are actually rendered.

Tessellator

Objects of the IDLgrTessellator class convert a simple concave polygon (or a simple
polygon with holes) into a number of simple convex polygons (general triangles).
Tessellation is useful because IDL’s polygon object handles only convex polygons.

See IDLgrTessellator in the IDL Reference Guide for further details.

TrackBall

Objects of the TrackBall class provide a simple interface to allow the user to translate
and rotate three-dimensional Object Graphics hierarchies displayed in an IDL
WIDGET_DRAW window using the mouse.

See TrackBall in the IDL Reference Guide for further details.
Helper Objects Using IDL

Chapter 17: Object Graphics 517
Destination Objects

Destination objects are objects on which object trees can be rendered (displayed on a
screen or printed on a printer).

Buffer

Objects of the IDLgrBuffer class represent an off-screen, in-memory data area that
may serve as a graphics source or destination.

See IDLgrBuffer in the IDL Reference Guide for further details.

Clipboard

Objects of the IDLgrClipboard class send Object Graphics to the operating system’s
native clipboard in bitmap format.

See IDLgrClipboard in the IDL Reference Guide for further details.

Printer

Objects of the IDLgrPrinter class represent a hardcopy graphics destination. By
default, printer objects represent the default system printer; you can use the IDL
routines DIALOG_PRINTJOB and DIALOG_PRINTERSETUP to change the
printer associated with a printer object.

See IDLgrPrinter in the IDL Reference Guide for further details.

VRML

Objects of the IDLgrVRML class allow you to save the contents of an Object
Graphics hierarchy as a VRML 2.0 format file.

See IDLgrVRML in the IDL Reference Guide for further details.

Window

Objects of the IDLgrWindow class represent an on-screen area on a display device in
which graphic objects can be rendered.

See IDLgrWindow in the IDL Reference Guide for further details.
Using IDL Destination Objects

518 Chapter 17: Object Graphics
File Format Objects

MPEG

Objects of the IDLgrMPEG class allow you to save an array of image frames as an
MPEG movie.

See IDLgrMPEG in the IDL Reference Guide for further details.

Also available: the VRML destination object, described above, the IDLffDICOM
object, and the IDLffDXF object in the IDL Reference Guide.
File Format Objects Using IDL

Chapter 17: Object Graphics 519
Properties of Objects

IDL’s graphics objects have a number of associated properties—things like color, line
style, size, etc. Properties are set or changed via keywords to the object’s Init method
(specified when the object is created) or to the object’s SetProperty method. If you
are familiar with IDL Direct Graphics, many of the keywords used by IDL Object
Graphics will be familiar to you. Note, however, that unlike IDL Direct Graphics, the
IDL Object Graphics system allows you to change the value of an object’s properties
without re-creating the entire object. (Objects must be redrawn, however, with a call
to the destination object’s Draw method, for the changes to become visible.)

Setting Properties at Initialization

Often, you will set an object’s properties when creating the object for the first time.
Do this by specifying any keywords to the object’s Init method directly in the call of
OBJ_NEW that creates the object. For example, suppose you are creating a plot and
wish to use a red line to draw the plot line. You could specify the COLOR keyword to
the IDLgrPlot::Init method directly in the call to OBJ_NEW:

myPlot = OBJ_NEW('IDLgrPlot', xdata, ydata, COLOR=[255, 0, 0])

Remember that in most cases, an object’s Init method cannot be called directly.
Arguments to OBJ_NEW are passed directly to the Init method when the object is
created.

Setting Properties of Existing Objects

After you have created an object, you can set its properties using the object’s
SetProperty method. For example, the following two statements duplicate the single
call to OBJ_NEW shown above:

myPlot = OBJ_NEW('IDLgrPlot', xdata, ydata)
myPlot -> SetProperty, COLOR=[255, 0, 0]

Note
Not all keywords available when the object is being initialized are necessarily
available via the SetProperty method. Keywords available when using an object’s
SetProperty method are noted with the word Set in parentheses after the keyword
name in the list of keywords to the object’s Init method.
Using IDL Properties of Objects

520 Chapter 17: Object Graphics
Retrieving Property Settings

You can retrieve the value of a particular property using an object’s GetProperty
method. The GetProperty method accepts a list of keyword-variable pairs and returns
the value of the specified properties in the variables specified. For example, to return
the value of the COLOR property of the plot object in our example, use the statement:

myPlot -> GetProperty, COLOR=plotcolor

This returns the value of the COLOR property in the IDL variable plotcolor.

You can retrieve the values of all of the properties associated with a graphics object
by using the ALL keyword to the object’s GetProperty method. The following
statement:

myPlot -> GetProperty, ALL=allprops

returns an anonymous structure in the variable allprops; the structure contains the
values of all of the retrievable properties of the object.

Note
Not all keywords available when the object is being initialized are necessarily
available via the GetProperty method. Keywords available when using an object’s
GetProperty method are noted with the word Get in parentheses after the keyword
name in the list of keywords to the object’s Init method.)
Properties of Objects Using IDL

Chapter 17: Object Graphics 521
Undocumented Graphic Object Classes

Several of IDL’s graphics objects are subclassed from more generic IDL objects. You
may see references to the generic IDL objects when using IDL’s HELP procedure to
get information on an object, or when you use the OBJ_ISA or OBJ_CLASS
functions. You may also notice that the generic objects are not documented in
Appendix A, “IDL Object Class & Method Reference” of the IDL Reference Guide.
This is not an oversight.

We have chosen not to document the workings of the more generic objects from
which the IDL graphics objects are subclassed because we reserve the right to make
changes to their operation. We strongly recommend that you do not use the
undocumented object classes directly, or subclass your own object classes from them.
Research Systems, Inc. does not guarantee that user-written code that uses
undocumented features will continue to function in future releases of IDL.
Using IDL Undocumented Graphic Object Classes

522 Chapter 17: Object Graphics
Undocumented Graphic Object Classes Using IDL

Chapter 18:

TheGraphicsObject
Hierarchy

The following topics are covered in this chapter:
Overview . 524
Scenes . 525
Viewgroups . 526
Views . 527
Models . 528

Atomic Graphic Objects 529
Attribute and Helper Objects 530
The Rendering Process 531
Simple Plot Example 533
Using IDL 523

524 Chapter 18: The Graphics Object Hierarchy
Overview

In this chapter we will discuss the organization of a group of graphics objects into a
hierarchy or tree. A graphics tree may have any number of branches, each of which in
turn may have any number of sub-branches, etc.

For example, a graphics object tree with four graphics atoms might be contained in
three separate model objects, which are in turn contained in two distinct view objects,
both of which are contained in one scene object. In this example (shown in the figure
below), the scene object is the root of the graphics tree.

The advantage of organizing graphic objects into a tree structure is that by
manipulating any of the branches of the tree, all of the sub-branches of that branch
can be altered simultaneously. In our example, changes to the spatial transformation
associated with the model containing two graphics atoms will affect both of the
atoms. Similarly, calling a window or printer object’s Draw method on the scene
object will render all of the objects in the tree to that window or printer.

Figure 18-1: A graphics object tree.
Overview Using IDL

Chapter 18: The Graphics Object Hierarchy 525
Scenes

A scene, or instance of the IDLgrScene class, is the root-level object of most graphics
trees. Instances of the IDLgrScene class have Add and Remove methods, which
allow you to include or remove IDLgrView or IDLgrViewgroup objects in a scene. A
scene object is one of the possible arguments for a destination object’s Draw method.

It is not necessary to create a scene object if your graphics tree contains only one
view object; in that case, the view can serve as the root of the tree.
Using IDL Scenes

526 Chapter 18: The Graphics Object Hierarchy
Viewgroups

A viewgroup, or instance of the IDLgrViewgroup class, is a simple container object,
similar to the Scene object. The Viewgroup differs from the Scene in two ways:

1. It will not cause an erase to occur on a destination when the destination
object’s Draw method is called.

2. It can contain objects which do not have Draw methods.

Viewgroups are designed to be placed within a scene, and therefor do not typically
serve as the root-level object of a graphics tree. Instances of the IDLgrViewgroup
class have Add and Remove methods, which allow you to include or remove objects
in a viewgroup.
Viewgroups Using IDL

Chapter 18: The Graphics Object Hierarchy 527
Views

A view, or instance of the IDLgrView class, can also serve as the root-level object of
a graphics tree. Instances of the IDLgrView class have Add and Remove methods,
which allow you to include or remove IDLgrModel objects in a view. A view object
is one of the possible arguments for a destination object’s Draw method.

Every graphics tree must contain at least one view object. Often, it is convenient to
divide the objects being rendered into separate views, which are then contained by a
viewgroup or scene object.
Using IDL Views

528 Chapter 18: The Graphics Object Hierarchy
Models

A model, or instance of the IDLgrModel class, is a container for atomic graphic
objects or for other model objects. The model object incorporates a transformation
matrix (see Chapter 19, “Transformations” for an in-depth discussion of
transformation matrices) that applies to all of the graphics atoms and model objects it
contains. In addition to Add and Remove methods, the model object has methods to
Rotate, Scale, and Translate the model and its contents.
Models Using IDL

Chapter 18: The Graphics Object Hierarchy 529
Atomic Graphic Objects

An atomic graphic object, or graphic atom, is an instance of one of the following
classes: IDLgrAxis, IDLgrContour, IDLgrImage, IDLgrLight, IDLgrPlot,
IDLgrPolygon, IDLgrPolyline, IDLgrSurface, IDLgrText, or IDLgrVolume.
Graphics atoms combined in a model object (using the model object’s Add method)
share the same transformation matrix and can be rotated, scaled, or translated
together.
Using IDL Atomic Graphic Objects

530 Chapter 18: The Graphics Object Hierarchy
Attribute and Helper Objects

Attribute objects are used by atomic graphic objects to define how the graphics atom
will be rendered; attribute objects themselves are not drawn, and thus do not need to
be added to a model object. Attribute objects are instances of one of the following
classes: IDLgrFont, IDLgrPalette, IDLgrPattern, or IDLgrSymbol. For example, a
text object (a graphic atom) defines which type style it will be rendered in by setting
its FONT property equal to an instance of the IDLgrFont object.

Helper objects are used to change or create data to make it suitable for a particular
type of rendering. In IDL, there are several helper objects which are instances of the
following classes: IDLgrTessellator and TrackBall. The tessellator object changes a
simple concave polygon (or a simple polygon with holes) into a number of simple
convex polygons (general triangles) suitable for use by objects of the IDLgrPolygon
class. The trackball object translates widget events from a draw widget (created with
the WIDGET_DRAW function) into transformations that emulate a virtual trackball
(for transforming object graphics in three dimensions).

For more information, see Chapter 21, “Using Attributes and Helpers”.
Attribute and Helper Objects Using IDL

Chapter 18: The Graphics Object Hierarchy 531
The Rendering Process

In Object Graphics, rendering occurs when the Draw method of a destination object
is called. A scene, viewgroup, or view is typically provided as the argument to this
Draw method. This argument represents the root of a graphics hierarchy. When the
destination’s Draw method is called, the graphics hierarchy is traversed, starting at
the root, then proceeding to children in the order in which they were added to their
parent.

For example, suppose we have the following hierarchy:

oWindow = OBJ_NEW(’IDLgrWindow’)
oView = OBJ_NEW(’IDLgrView’)
oModel = OBJ_NEW(’IDLgrModel’)
oView->Add, oModel
oXAxis = OBJ_NEW(’IDLgrAxis’, 0)
oModel->Add, oXAxis
oYAxis = OBJ_NEW(’IDLgrAxis’, 1)
oModel->Add, oYAxis

To draw the view (and its contents) to the window, the Draw method of the window is
called with the view as its argument:

oWindow->Draw, oView

The window’s Draw method will perform any window-specific drawing setup, then
ask the view to draw itself. The view will then perform view-specific drawing (for
example, clearing a rectangular area to a color), then calls the Draw method for each
of its children (in this case, there is only one child, a model). The model’s Draw
method will push its transformation matrix on a stack, then step through each of its
children (in the order in which they were added) and ask them to draw themselves. In
this example, oXAxis will be asked to draw itself first; then oYAxis will be asked to
draw itself. Once each of the model’s children is drawn, the transformation matrix
associated with the model is popped off of the stack.

Thus, for each object in the hierarchy, drawing essentially consists of three steps:

• Perform setup drawing for this object.

• Step through list of contained children and ask them to draw themselves.

• Perform an follow-up drawing actions before returning control to parent.

The order in which objects are added to the hierarchy will have an impact on when
the objects are drawn. Drawing order can be changed by using the Move method of a
Using IDL The Rendering Process

532 Chapter 18: The Graphics Object Hierarchy
scene, viewgroup, view, or model to change the position of a specific object within
the hierarchy.

The first time a graphic atom (such as an axis, plot line, or text) is drawn to a given
destination, a device-specific encapsulation of its visual representation is created and
stored as a cache. Subsequent draws of this graphic atom to the same destination can
then be drawn very efficiently. The cache is destroyed only when necessary (for
example, when the data associated with the graphic atom changes). Graphic attribute
changes (such as color changes) typically do not cause cache destruction. To gain
maximum benefit from the caches, modification of atomic graphic properties should
be kept to bare minimum.
The Rendering Process Using IDL

Chapter 18: The Graphics Object Hierarchy 533
Simple Plot Example

The following section shows the IDL code used to create a simple object tree. While
you are free to enter the commands shown at the IDL command line, remember that
the IDL Object Graphics API is designed as a programmer’s interface, and is not as
well suited for interactive, ad hoc work at the IDL command prompt as are IDL
Direct Graphics.

The following IDL commands construct a simple plot of an array versus the integer
indices of the array. Note that no axes, title, or other annotations are included; the
commands draw only the plot line itself. (This example is purposefully simple; it is
meant to illustrate the skeleton of a graphics tree, not to produce a useful plot.)

; Create a view 2 units high by 100 units wide
; with its origin at (0,-1):
view = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[0,-1,100,2])
; Create a model:
model = OBJ_NEW('IDLgrModel')
; Create a plot line of a sine wave:
plot = OBJ_NEW('IDLgrPlot', SIN(FINDGEN(100)/10))
; Create a window into which the plot line will be drawn:
window = OBJ_NEW('IDLgrWindow')
; Add the plot line to the model object:
model -> ADD, plot
; Add the model object to the view object:
view -> ADD, model
; Render the contents of the view object in the window:
window -> DRAW, view

To destroy the window and remove the objects created from memory, use the
following commands:

OBJ_DESTROY, window
; Destroying the view object destroys all
; of the objects contained in the view:
OBJ_DESTROY, view
Using IDL Simple Plot Example

534 Chapter 18: The Graphics Object Hierarchy
Simple Plot Example Using IDL

Chapter 19:

Transformations
The following topics are covered in this chapter:
Overview . 536
Viewport . 537
Projection . 539
Eye Position . 541
View Volume . 543

Model Transformations 546
Coordinate Conversion 549
A Simple Example 552
Virtual Trackball and 3D Transformations 555
Using IDL 535

536 Chapter 19: Transformations
Overview

Unlike IDL Direct Graphics, the IDL Object Graphics system does not automatically
position and size the objects to be rendered. It is up to you, as a programmer, to
properly define how your graphic elements will be positioned when rendered.

There are three aspects to this transformation from a generic depiction of your data to
a representation that can be rendered to an output device (a graphics destination
object, such as a window or printer) with the perspective, size, and location you want.

Viewport

The first aspect is the view of the graphics objects to be rendered: the size of the
viewing area (the viewport), the type of projection used, the position of the viewer’s
eye as it looks at the graphics objects, and the particular view volume in three-
dimensional space that will be rendered to the viewing area. These elements of the
view of your graphics objects are, appropriately, controlled by properties of the
IDLgrView object being rendered.

Location

The second aspect of the transformation is the location and position of your graphics
objects with respect to the viewing area. Graphics objects can be translated, rotated,
or scaled by setting the appropriate properties of the IDLgrModel object that contains
them.

Note
The viewport and location of an object are independent: It is possible, for example,
to translate a graphic object so that it is no longer within the viewing area that is
rendered in a window or on a printer.

Coordinate Systems and Scaling

The third aspect of the transformation is the conversion between data, device, and
normalized coordinates. The IDL Object Graphics system gives you full control over
which data values are used, which are displayed, and which coordinate systems are
used. This means that you must explicitly ensure that the objects to be rendered and
the view object to which they belong use the same coordinate system and are scaled
appropriately.

This chapter discusses the properties and methods used to size and position both your
viewing area and the graphics objects you wish to render.
Overview Using IDL

Chapter 19: Transformations 537
Viewport

One of the first steps in determining how graphics objects will appear when rendered
on a graphics destination object is to select the location and dimensions of the
rectangular area—the viewport—on the destination in which the rendering will be
displayed. Set the location and dimensions of the viewport using the LOCATION and
DIMENSIONS keywords to the IDLgrView::Init method when creating the view
object (or after creation using the SetProperty method). For example, the following
statement creates a view object with a viewport that is 300 pixels by 200 pixels, with
its lower left corner located 100 pixels up from the bottom and 100 pixels to the right
of the left edge of the destination object:

myView = OBJ_NEW('IDLgrView', LOCATION=[100,100], $
DIMENSIONS=[300,200])

Both the LOCATION and DIMENSIONS properties of the view object honor the
value of the UNITS property, which specifies the type of units in which
measurements are made. (Pixels are the default units, so no specification of the
UNITS keyword was necessary in the above example.)

The viewport of an existing view can be changed using the SetProperty method:

Figure 19-1: Positioning a view on the screen.
Using IDL Viewport

538 Chapter 19: Transformations
myView -> SetProperty, LOCATION=[0,0], DIMENSIONS=[200,200]

changes the location of the viewport to have its lower left corner at (0, 0) and a size of
200 pixels by 200 pixels.

Note
The eye is positioned in only one dimension (along the z-axis) and always points in
the –z direction.
Viewport Using IDL

Chapter 19: Transformations 539
Projection

When three-dimensional graphics are displayed on a flat computer screen or printed
on paper, they must be projected onto the viewing plane. A projection is a way of
converting positions in 3D space into locations in the 2D viewing plane. IDL
supports two types of projections—parallel and perspective—for each view.

Parallel Projections

A parallel projection projects objects in 3D space onto the 2D viewing plane along
parallel rays. The figure below shows a parallel projection; note that two objects that
are the same size but at different locations still appear to be the same size when
projected onto the viewplane.

View objects use a parallel projection by default. To explicitly set a view object to use
a parallel projection, set the PROJECTION keyword to the IDLgrView::Init method
equal to 1 (or use the SetProperty method to set the projection for an exiting view
object):

myView -> SetProperty, PROJECTION = 1

Figure 19-2: In a parallel projection, rays do not converge at the eye.
Using IDL Projection

540 Chapter 19: Transformations
Perspective Projections

A perspective projection projects objects in 3D space onto the 2D viewing plane
along rays that converge at the eye position. The figure below shows a perspective
projection; note that objects that are farther from the eye appear smaller when
projected onto the viewplane.

Set the PROJECTION keyword to the IDLgrView::Init method equal to 2 (or use the
SetProperty method to set the projection for an exiting view object) to use a
perspective projection:

myView -> SetProperty, PROJECTION = 2

Figure 19-3: In a perspective projection, rays converge at the eye.
Projection Using IDL

Chapter 19: Transformations 541
Eye Position

The eye position is the position along the z-axis from which a set of objects contained
in a view object are seen. Use the EYE keyword to the IDLgrView::Init method to
specify the distance from the eye position to the viewing plane (or use the
SetProperty method to alter the eye position of an existing view object). The eye
position must be a z value larger than the z value of the near clipping plane (see “Near
and Far Clipping Planes” on page 543) or zero, which ever is greater. That is, the eye
must always be located at a positive z value, and must be outside the volume bounded
by the near and far clipping planes.

For example, the following moves the eye position to z = 5:

myView -> SetProperty, EYE=5

The eye is always positioned directly in front of the center of the viewplane rectangle.
That is, if the VIEWPLANE_RECT property is set equal to [–1, –1, 2, 2], the eye will
be located at X=0, Y=0.

Changing the position of the eye has no affect when you are using a parallel
projection. Changing the eye position when you are using a perspective projection
has a somewhat counter-intuitive affect: moving the eye closer to the near clipping
plane causes objects in the volume being rendered to appear smaller rather than
larger. To understand why this should be true, consider the following diagram.

Figure 19-4: Moving the eye closer to the viewplane causes objects to appear
smaller.
Using IDL Eye Position

542 Chapter 19: Transformations
In a perspective projection, rays from the graphic objects in the view volume
converge at the eye position. When the eye is close to the viewing plane, the
projected rays cross the viewing plane (where rendering actually occurs) in a
relatively small area. When the eye moves farther from the viewing plane, the
projected rays become more nearly parallel and occupy a larger area on the viewing
plane when rendered.
Eye Position Using IDL

Chapter 19: Transformations 543
View Volume

The view volume defines the three-dimensional volume in space that, once projected,
is to fit within the viewport. There are two parts to the view volume: the viewplane
rectangle and the near and far clipping planes.

Viewplane Rectangle

The viewplane rectangle defines the bounds in the X and Y directions that will be
mapped into the viewport. Objects (or portions of objects) that lie outside the
viewplane rectangle will not be rendered. The viewplane rectangle is always located
at Z=0.

Use the VIEWPLANE_RECT keyword to the IDLgrView::Init method (or use the
SetProperty method if you have already created the view object) to set the location
and extent of the viewplane rectangle. Set the keyword equal to a four-element
floating-point vector; the first two elements specify the X and Y location of the lower
left corner of the rectangle, and the second two elements specify the width and
height. The default rectangle is located at (-1.0, -1.0) and is two units wide and two
units high ([–1.0, –1.0, 2.0, 2.0]). For example, the following command changes the
viewplane rectangle to be located at (0.0, 0.0) and to be one unit square:

myView -> SetProperty, VIEWPLANE_RECT = [0.0, 0.0, 1.0, 1.0]

Near and Far Clipping Planes

The near and far clipping planes define the bounds in the Z direction that will be
mapped into the viewport. Objects (or portions of objects) that lie nearer to the eye
than the near clipping plane or farther from the eye than the far clipping plane will
not be rendered. The figure below shows near and far clipping planes.

Use the ZCLIP keyword to the IDLgrView::Init method (or use the SetProperty
method if you have already created the view object) to set the near and far clipping
planes. Set the keyword equal to a two-element floating-point vector that defines the
positions of the two clipping planes: [near, far]. The default clipping planes are at
Z = 1.0 and Z = –1.0 ([1.0, –1.0]). For example, the following command changes the
near and far clipping planes to be located at Z = 2.0 and Z = –3.0, respectively.

myView -> SetProperty, ZCLIP = [2.0, -3.0]
Using IDL View Volume

544 Chapter 19: Transformations
Finding an Appropriate View Volume

Finding an appropriate view volume for a given object tree is relatively simple in
theory. To find the appropriate viewplane rectangle, you must find the overall X and
Y range of the object (usually a model or scene object) that contains the items drawn
in the object tree, accounting for any transformations of objects contained in the tree.
Similarly, to find the appropriate near and far clipping planes, you can find the Z
range of the object that contains the items drawn in the object tree. In practice,
however, finding, adding, and transforming the ranges for a large object tree can be
complicated.

Two routines contained in the IDL distribution provide an example of how the view
volume can be computed in many cases. These routines are defined in the files
set_view.pro and get_bounds.pro, located in the
examples/visual/utility subdirectory of the IDL distribution. The
SET_VIEW procedure accepts as arguments the object references of a view object
and a destination object, computes an appropriate view volume for the view object,
and sets the VIEWPLANE_RECT property of the view object accordingly. The

Figure 19-5: Near and Far Clipping Planes. Object 2 is not rendered, because it
does not lie between the near and far clipping planes.
View Volume Using IDL

Chapter 19: Transformations 545
SET_VIEW procedure calls the GET_BOUNDS procedure to compute the X, Y, and
Z ranges of the objects contained in the view object.

The SET_VIEW and GET_BOUNDS routines are used in the examples in this
volume, and are available for your use when creating and displaying object
hierarchies. They are, however, example code, and are not truly generic in the
situations they address. When you encounter a situation for which these routines do
not produce the desired result, we encourage you to copy and alter the code to suit
your own needs.

Inspect the SET_VIEW.PRO and GET_BOUNDS.PRO files for further details.
Using IDL View Volume

546 Chapter 19: Transformations
Model Transformations

An IDLgrModel object is a container for any graphics atoms that are to be rotated,
translated, or scaled. Each IDLgrModel object has a transformation property (set via
the TRANSFORM keyword to the IDLgrModel::Init or SetProperty method), which
is a 4 x 4 floating-point matrix. For a general discussion of transformation matrices
and three-dimensional graphics, see “Three-Dimensional Graphics” in Chapter 12.

Note
A model object’s transformation matrix is akin to the transformation matrix used by
IDL Direct Graphics and stored in the !P.T system variable field. Transformation
matrices associated with model object do not use the value of !P.T, however, and
are not affected by the T3D procedure used in Direct Graphics.

By default, a model object’s transformation matrix is set equal to a 4-by-4 identity
matrix:

You can change the transformation matrix of a model object directly, using the
TRANSFORM keyword to the IDLgrModel::Init or SetProperty method:

myModel = OBJ_NEW('IDLgrModel', TRANSFORM = tmatrix)

where tmatrix is a 4-by-4 transformation matrix. Alternatively, you can use the
Translate, Rotate, and Scale methods to the IDLgrModel object to alter the model’s
transformation matrix.

Translation

The IDLgrModel::Translate method takes three arguments specifying the amount to
translate the model object and its contents in the X, Y, and Z directions. For example,
to translate a model and its contents by 1 unit in the X-direction, you could use the
following statements:

1.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0

0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0
Model Transformations Using IDL

Chapter 19: Transformations 547
dx = 1 & dy = 0 & dz = 0
myModel -> Translate, dx, dy, dz

How does this affect the transformation matrix? Notice that we could change the
transformation matrix in an identical way using the following statements:

; Define translation values:
dx = 1 & dy = 0 & dz = 0
; Get existing transformation matrix:
myModel -> GetProperty, TRANSFORM = oldT
; Provide a transformation matrix that performs the translation:
transT = [[1.0, 0.0, 0.0, dx], $

[0.0, 1.0, 0.0, dy], $
[0.0, 0.0, 1.0, dz], $
[0.0, 0.0, 0.0, 1.0]]

; Multiply the existing transformation matrix by
; the matrix that performs the translation:
newT = oldT # transT
; Apply the new transformation matrix to the model object:
myModel -> SetProperty, TRANSFORM = newT

Rotation

The IDLgrModel::Rotate method takes two arguments specifying the axis about
which to rotate and the number of degrees to rotate the model object and its contents.
For example, to rotate a model and its contents by 90 degrees around the y-axis, you
could use the following statements:

axis = [0,1,0] & angle = 90
myModel -> Rotate, axis, angle

How does this affect the transformation matrix? Notice that we could change the
transformation matrix in an identical way using the following statements:

; Define rotation values:
axis = [0,1,0] & angle = 90
; Get existing transformation matrix:
myModel -> GetProperty, TRANSFORM = oldT
; Define sine and cosine of angle:
cosa = COS(!DTOR*angle)
sina = SIN(!DTOR*angle)
; Provide a transformation matrix that performs the rotation:
rotT = [[cosa, 0.0, sina, 0.0], $

[0.0, 1.0, 0.0, 0.0], $
[-sina, 0.0, cosa, 0.0], $
[0.0, 0.0, 0.0, 1.0]]

; Multiply the existing transformation matrix
; by the matrix that performs the rotation.
newT = oldT # rotT
Using IDL Model Transformations

548 Chapter 19: Transformations
; Apply the new transformation matrix to the model object:
myModel -> SetProperty, TRANSFORM = newT

Scaling

The IDLgrModel::Scale method takes three arguments specifying the amount to scale
the model object and its contents in the x, y, and z directions. For example, to scale a
model and its contents by 2 units in the y direction, you could use the following
statements:

sx = 1 & sy = 2 & sz = 1
myModel -> Scale, sx, sy, sz

How does this affect the transformation matrix? Notice that we could change the
transformation matrix in an identical way using the following statements:

; Define scaling values:
sx = 1 & sy = 2 & sz = 1
; Get existing transformation matrix:
myModel -> GetProperty, TRANSFORM = oldT
; Provide a transformation matrix that performs the scaling:
scaleT = [[sx, 0.0, 0.0, 0.0], $

[0.0, sy, 0.0, 0.0], $
[0.0, 0.0, sz, 0.0], $
[0.0, 0.0, 0.0, 1.0]]

; Multiply the existing transformation matrix
; by the matrix that performs the scaling.
newT = oldT # scaleT
; Apply the new transformation matrix to the model object:
myModel -> SetProperty, TRANSFORM = newT

Combining Transformations

Note that model transformations are cumulative. That is, a model object contained in
another model is subject to both its own transformation and to that of its container.
All transformation matrices that apply to a given model object are multiplied together
when the object is rendered. For example, consider a model that contains another
model:

model1 = OBJ_NEW('IDLgrModel', TRANSFORM = trans1)
model2 = OBJ_NEW('IDLgrModel', TRANSFORM = trans2)
model2 -> Add, model1

The model1 object is now subject to both its own transformation matrix (trans1) and
to that of its container (trans2). The result is that when model1 is rendered, it will be
rendered with a transformation matrix = trans1 # trans2.
Model Transformations Using IDL

Chapter 19: Transformations 549
Coordinate Conversion

Most transformations are handled by the transformation matrix of a model object. For
convenience, however, graphic atoms may also have a simplified transformation
applied to them. Coordinate transformations applied to individual graphic atoms
allow you to change only the translation (position) and scale; this is useful when
converting from one coordinate system to another. For example, you may build your
view object using normalized coordinates, so that values range between zero and one.
If you create a graphic object—a surface object, say—based on the range of data
values, you would need to convert your surface object (built with a data coordinate
system) to match the view object (built with a normal coordinate system). To do this,
use the [XYZ]COORD_CONV keywords to the graphic object in question. The
[XYZ]COORD_CONV keywords take as their argument a two-element vector that
specifies the translation and scale factor for each dimension.

For example, suppose you have a surface object whose data is specified in a range
from [0, 0, zMin] to [xMax, yMax, zMax]. If you wanted to work with this surface as
if it were in a normalized [–1, –1, –1] to [1, 1, 1] space, you could use the following
coordinate conversions:

; Create some data:
myZdata = DIST(60)
; Use the IDL SIZE command to determine
; the size of each dimension of myZdata:
sz = SIZE(myZdata)
; Create a scale factor for the X dimension:
xs = 2.0/(sz[1]-1)
; Create a scale factor for the Y dimension:
ys = 2.0/(sz[2]-1)
; Create a scale factor for the Z dimension:
zs = 2.0/MAX(myZdata)

Now, use the [XYZ]COORD_CONV keywords to the IDLgrSurface::Init method to
translate the surface by minus one unit in each direction, and to scale the surface by
the scale factors:

mySurface = OBJ_NEW('IDLgrSurface', myZdata, $
XCOORD_CONV = [-1, xs], YCOORD_CONV = [-1, ys], $
ZCOORD_CONV = [-1, zs])

Remember that using the [XYZ]COORD_CONV keywords is simply a
convenience—the above example could also have been written as follows:

; Create some data:
myZdata = DIST(60)
Using IDL Coordinate Conversion

550 Chapter 19: Transformations
; Use the IDL SIZE command to determine the size
; of each dimension of myZdata:
sz = SIZE(myZdata)
; Create a scale factor for the X dimension:
xs = 2.0/(sz(1)-1)
; Create a scale factor for the Y dimension:
ys = 2.0/(sz(2)-1)
; Create a scale factor for the Z dimension:
zs = 2.0/(MAX(myZdata)
; Create a model object:
myModel = OBJ_NEW('IDLgrModel')
; Apply scale factors:
myModel -> Scale, xs, ys, zs
; Translate:
myModel -> Translate, -1, -1, -1
; Create surface object:
mySurface = OBJ_NEW('IDLgrSurface', myZdata)
; Add surface object to model object:
myModel -> Add, mySurface

A Function for Coordinate Conversion

Often, it is convenient to convert minimum and maximum data values so that they fit
in the range from 0.0 to 1.0 (that is, so they are normalized). Rather than adding the
code to make this coordinate conversion to your code in each place it is required, you
may wish to define a coordinate conversion function.

For example, the following function definition accepts a two-element array
representing minimum and maximum values returned by the XYZRANGE keyword
to the GetProperty method, and returns two-element array of scaling parameters
suitable for the XYZCOORD_CONV keywords:

FUNCTION NORM_COORD, range
scale = [-range[0]/(range[1]-range[0]), 1/(range[1]-range[0])]
RETURN, scale

END

If you define a function like this in your code, you can then call it whenever you need
to scale your data ranges into normalized coordinates. The following statements
create a plot object from the variable data, retrieve the values of the X and Y ranges
for the plot, and the use the XYCOORD_CONV keywords to the SetProperty method
and the NORM_COORD function to set the coordinate conversion.

plot = OBJ_NEW('IDLgrPlot', data)
plot -> GetProperty, XRANGE=xr, YRANGE=yr
plot -> SetProperty, XCOORD_CONV=NORM_COORD(xr), $

YCOORD_CONV=NORM_COORD(yr)
Coordinate Conversion Using IDL

Chapter 19: Transformations 551
The function NORM_COORD is defined in the file norm_coord.pro in the
examples/visual/utility subdirectory of the IDL distribution.
Using IDL Coordinate Conversion

552 Chapter 19: Transformations
A Simple Example

The following example steps through the process of creating a surface object and all
of the supporting objects necessary to display it.

Note
You do not need to enter the example code yourself. The example code shown here
is duplicated in the procedure file test_surface.pro, located in the
examples/visual subdirectory of the IDL distribution. You can run the example
procedure by entering TEST_SURFACE at the IDL command prompt.

When creating this procedure, we allow the user to specify keywords that will return
object references to the view, model, surface, and window objects. This allows us to
manipulate the objects directly from the IDL command line after the procedure has
been run.

PRO test_surface, VIEW=oView, MODEL=oModel, $
SURFACE=oSurface, WINDOW=oWindow

; Create some data.
zData = DIST(60)

; Create a view object. We set the color of the view
; area to a dark grey using the COLOR keyword,
; and set the viewplane to a square area occupying one
; unit in each quadrant of the XY plane—a normalized
; coordinate system—using the VIEWPLANE_RECT keyword.
oView = OBJ_NEW('IDLgrView', COLOR=[60,60,60], $

VIEWPLANE_RECT=[-1,-1,2,2])

; Create a model object:
oModel = OBJ_NEW('IDLgrModel')

; Add the model object to the view object:
oView->Add, oModel

; Create a surface object. We set the color of
; the surface to pure red, using the COLOR keyword:
oSurface = OBJ_NEW('IDLgrSurface', zData, color=[255,0,0])

; Add the surface object to the model object:
oModel->Add, oSurface
A Simple Example Using IDL

Chapter 19: Transformations 553
; Next, we use the GetProperty method of the surface
; object to retrieve the data range of the surface:
oSurface->GetProperty,XRANGE=xrange,YRANGE=yrange,ZRANGE=zrange

; Scale surface to normalized units and center using
; the SetProperty method of the surface object to change
; the [XYZ]COORD_CONV properties:
xs = [-0.5, 1/(xrange[1]-xrange[0])]
ys = [-0.5, 1/(yrange[1]-yrange[0])]
zs = [-0.5, 1/(zrange[1]-zrange[0])]
oSurface->SetProperty, XCOORD_CONV=xs, YCOORD_CONV=ys,$

ZCOORD_CONV=zs

; Now we rotate the model object to display a standard view:
oModel->Rotate,[1,0,0], -90
oModel->Rotate,[0,1,0], 30
oModel->Rotate,[1,0,0], 30

; Finally, we create a window (destination) object
; and draw the contents of the view object to it:
oWindow = OBJ_NEW('IDLgrWindow')
oWindow->Draw, oView

END

Play with the example to learn how object transformations work and interact. Try the
following commands at the IDL prompt to observe what they do:

First, compile test_surface.pro:

.RUN test_surface.pro

Now, execute the procedure. The variables you supply via the SURFACE, MODEL,
VIEW, and WINDOW keyword will contain object references you can manipulate
from the command line:

test_surface, VIEW=myview, MODEL=mymodel, $
SURFACE=mysurf, WINDOW=mywin

This will create a window object and display the surface. Now try the following to
translate the object to the right:

mymodel -> Translate, 0.2, 0, 0

The model transformation changes as soon as you issue this command. The window
object, however, will not be updated to reflect the new position until you issue a
Draw command:

mywin -> Draw, myview
Using IDL A Simple Example

554 Chapter 19: Transformations
Try a rotation in the y direction:

mymodel -> Rotate, [0,1,0], 45
mywin -> Draw, myview

Repeat the commands several times and observe what happens.

Try some of the following. Remember to issue a Draw command after each change in
order to see what you have done.

mymodel -> Scale, 0.5, 0.5, 0.5
mymodel -> Scale, 1, 0.5, 1
mymodel -> Scale, 1, 2, 1
mymodel -> Rotate, [0,0,1], 45
mysurf -> SetProperty, COLOR = [0, 255, 0]
myview -> SetProperty, PROJECTION = 2, EYE = 2
myview -> SetProperty, EYE = 1.1
myview -> SetProperty, EYE = 6
A Simple Example Using IDL

Chapter 19: Transformations 555
Virtual Trackball and 3D Transformations

To create truly interactive object graphics, you must allow the user to transform the
position or orientation of objects using the mouse. One way to do this is to provide a
virtual trackball that lets the user manipulate objects interactively on the screen.

The procedure file trackball_ _define.pro, found in the lib directory of the
IDL distribution, contains the object definition procedure for a virtual trackball
object. This trackball object is used in several of the examples presented later in this
volume, and is also used by other example and demonstration code included with
IDL. The trackball object has three methods: Init, Update, and Reset. These methods
allow you to retrieve mouse movement events and alter your model transformations
accordingly.

The trackball object behaves as if there were an invisible trackball, centered at a
position you specify, overlaid on a draw widget. The widget application’s event
handler uses the widget event information to update both the trackball’s state and the
model transformation of the objects displayed in the draw widget’s window object.
When the user clicks and drags in the draw widget, objects in the draw widget rotate
as if the user were manipulating them with a physical trackball.

See TrackBall in the IDL Reference Guide for details on creating and using trackball
objects. Several of the other example files located in the examples/visual
subdirectory of the IDL distribution include trackball objects, and may be studied for
further insight into the mechanics of transforming object hierarchies based on user
input.
Using IDL Virtual Trackball and 3D Transformations

556 Chapter 19: Transformations
Virtual Trackball and 3D Transformations Using IDL

Chapter 20:

Working with Color
The following topics are covered in this chapter:
Overview . 558
Color and Digital Data 559
Indexed Color Model 560
RGB Color Model 561

Color and Destination Objects 562
Palettes . 563
Using Color . 564
How IDL Interprets Color Values 566
Using IDL 557

558 Chapter 20: Working with Color
Overview

Color is often an integral part of the process of visualizing a dataset. The IDL Object
Graphics system allows you to use color in a number of different ways; this chapter
explains how to specify color when using Object Graphics and how IDL interacts
with the destination devices on which graphics are finally displayed.
Overview Using IDL

Chapter 20: Working with Color 559
Color and Digital Data

The IDL Object Graphics system provides two color models for you to choose
between when creating destination (window or printer) objects: an Indexed Color
Model and an RGB Color Model. Indexed color allows you to map data values to
color values using a color palette. RGB color allows you to specify color values
explicitly, using an RGB triple. (See “Specifying RGB Values” on page 564 for more
information on RGB triples.) You choose one of these two color models to associate
with each destination object.

Note
For some X11 display situations, IDL may not be able to support a color index
model destination object in object graphics. We do, however, guarantee that an
RGB color model destination will be available for all display situations.

The devices on which graphics are rendered—computer displays, printers, plotters,
frame buffers, etc.—also support one or more color models. IDL performs any
conversions necessary to support either the Indexed or RGB color model on any
physical device. That is, the color model used by IDL is entirely independent of the
color model used by the physical device. “How IDL Interprets Color Values” on
page 566 explains how IDL’s Object System color models interact with different
device color models.

Note
You can specify the color of any graphic object using either a color index or red,
green, and blue (RGB) value, regardless of the color model used by the destination
object or the physical destination device. See “Using Color” on page 564 for
details.
Using IDL Color and Digital Data

560 Chapter 20: Working with Color
Indexed Color Model

In the Indexed color model, you have control over how colors are loaded into a color
lookup table. You do this by specifying a palette, which maps color index values into
RGB values, for the destination object. When the contents of your destination object
are rendered on the physical device (that is, when you call the Draw method for the
destination object), the RGB values from the palette are either:

• passed directly through to the physical device (if it uses RGB values), or

• loaded into the physical device’s lookup table (if it uses Indexed values).

Specify that a destination object should use the Indexed color model by setting the
COLOR_MODEL property of the object equal to 1 (one):

myWindow = OBJ_NEW('IDLgrWindow', COLOR_MODEL = 1)

Specify a palette object by setting the PALETTE property equal to an object of the
IDLgrPalette class:

myWindow -> SetProperty, PALETTE=myPalette

If you do not specify a palette object for a destination object that uses the Indexed
color model, a grayscale ramp palette is loaded automatically.

When you assign a color index to an object that is drawn on the destination device,
the color index is used to look up an RGB value in the specified palette. When you
assign an RGB value to an object that is drawn on the destination device, the nearest
match within the destination object’s palette is found and used to represent that color.
Indexed Color Model Using IDL

Chapter 20: Working with Color 561
RGB Color Model

In the RGB color model, IDL takes responsibility for filling the color lookup table on
the destination device (if necessary). When the contents of your destination object are
rendered on the physical device (that is, when you call the Draw method for the
destination object), the RGB values are either:

• passed directly through to the physical device (if it uses RGB values), or

• matched as nearly as possible with colors loaded in the physical device’s
lookup table (if it uses Indexed values).

Specify that a destination object should use the RGB color model by setting the
COLOR_MODEL property of the object equal to 0 (zero):

myWindow = OBJ_NEW('IDLgrWindow', COLOR_MODEL = 0)

This is the default for newly-created destination objects.
Using IDL RGB Color Model

562 Chapter 20: Working with Color
Color and Destination Objects

Each destination object has one of the two color models described above associated
with it. Destination objects use the Indexed color model if the COLOR_MODEL
property is set equal to 1 (one) or the RGB color model if the COLOR_MODEL
property is set equal to 0 (zero, the default). Once a destination object has been
created, you cannot change the associated color model.

You can, however, create destination objects that use different color models in the
same IDL session. That is, it is possible to have two window objects—one using the
Indexed color model and one using the RGB color model—on your computer screen
at the same time.

Remember also that you can specify the color of any graphic object using either a
color index or an RGB value, regardless of the color model used by the destination
object or the physical destination device. The main distinction between the two color
models lies in how IDL manages the color lookup table (if any) of the physical
destination device. See “Using Color” on page 564 for details.

A Note about Draw Widgets

Drawable areas created with the WIDGET_DRAW function deserve a special
mention. When a draw widget is created with the GRAPHICS_LEVEL keyword set
equal to 2, the widget contains an instance of an IDLgrWindow object rather than an
IDL Direct Graphics drawable window. By default, the window object uses the RGB
color model; to use the indexed color model, set the COLOR_MODEL keyword to
WIDGET_DRAW equal to 1 (one).
Color and Destination Objects Using IDL

Chapter 20: Working with Color 563
Palettes

Objects of the IDLgrPalette class are used to create color lookup tables. The
following statements create a palette object that reverses a standard grayscale ramp
palette:

rval = (gval = (bval = REVERSE(INDGEN(256))))
myPalette = OBJ_NEW('IDLgrPalette', rval, gval, bval)

Palettes can be associated either with graphics destination objects (windows or
printers) or with individual graphic atoms:

myWindow -> SetProperty, PALETTE=myPalette

or

myImage -> SetProperty, PALETTE=myPalette

Note
Palettes associated with graphic atoms are only used when the destination object
uses an RGB color model; if the destination object uses an indexed color model, the
destination object’s palette is always used.

See “IDLgrPalette” in Appendix A of the IDL Reference Guide for details on creating
palette objects.
Using IDL Palettes

564 Chapter 20: Working with Color
Using Color

The color of a graphic object is specified by the COLOR property of that object. You
can set the color of an object either when the object is created or afterwards. For
example, the following statement creates a view object and sets its color value to the
RGB triple [60, 60, 60] (a dark gray).

myView = OBJ_NEW('IDLgrView', COLOR = [60, 60, 60])

The following statement changes the color value of an existing axis object to the
color value specified for entry 100 in the color palette associated with the axis object.

myAxis -> SetProperty, COLOR=100

Remember that color palettes associated with individual graphic atoms are only used
when the destination object uses an RGB color model.

Specifying RGB Values

RGB values are specified with RGB triples. An RGB triple is a three-element vector
of integer values, [r, g, b], generally ranging between 0 and 255. A value of zero is
the darkest possible value for each of the three channels—thus an RGB triple of
[0, 0, 0] represents black, [0, 255, 0] represents bright green, and [255, 255, 255]
represents white.

For example, suppose we create a plot line with the following statements:

myWindow = OBJ_NEW('IDLgrWindow')
myView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[0, 0, 10, 10])
myModel = OBJ_NEW('IDLgrModel')
myPlot = OBJ_NEW('IDLgrPlot', FINDGEN(10), THICK = 5, $

COLOR=[255, 255, 255])
myModel -> Add, myPlot
myView -> Add, myModel
myWindow -> Draw, myView

Notice the following aspects of the above example:

1. The newly-created window (destination) object uses an RGB color mode (the
default).

2. The default color of the view object—the background against which the plot
line is drawn—is white ([255, 255, 255]).

3. The default color of the plot object (and all objects, for that matter) is black.
This means that it is necessary to specify a color other than black for the object
if we wish it to show up against the black background.
Using Color Using IDL

Chapter 20: Working with Color 565
Try changing the colors with the following statements:

myPlot -> SetProperty, COLOR = [150, 0, 150]
myView -> SetProperty, COLOR = [75, 250, 75]
myWindow -> Draw, myView
Using IDL Using Color

566 Chapter 20: Working with Color
How IDL Interprets Color Values

IDL determines colors to display differently based on whether the destination object
uses an Indexed or RGB color model, and on whether the physical destination device
supports an Indexed or RGB color model.

Indexed Color Model

If the destination object uses an Indexed color model, the color displayed is
calculated from the value specified by the object’s COLOR property as follows:

If a Color Index is Specified

• If the physical device uses an Indexed color model, the specified color index is
used as an index into the physical device’s lookup table. (Remember that the
physical device’s color lookup table is loaded via the PALETTE keyword to
the destination object.)

• If the physical device uses an RGB color model, the specified color index is
used as an index into the destination object’s palette. The RGB triple stored at
the index’s location in the palette is used as the physical device’s color value.

If an RGB Triple is Specified

• If the physical device uses an Indexed color model, the RGB triple is mapped
to the index of the nearest match in the device’s color lookup table.

• If the physical device uses an RGB color model, the RGB triple is passed
directly to the device.

RGB Color Model

If the destination object uses an RGB color model, the color displayed is calculated
from the value specified by the object’s COLOR property as follows:

If a Color Index is Specified

If the graphic object for which the color is being determined has a palette associated
with it, the RGB triple at that palette’s color index is retrieved. Otherwise, the RGB
triple at the specified index in the destination object’s palette is retrieved.

• If the physical device uses an Indexed color model, the RGB triple retrieved is
mapped to the index of the nearest match in the device’s color lookup table.
How IDL Interprets Color Values Using IDL

Chapter 20: Working with Color 567
• If the physical device uses an RGB color model, the RGB triple retrieved is
passed directly to the device.

If an RGB Triple is Specified

• If the physical device uses an Indexed color model, the RGB triple is mapped
to the index of the nearest match in the device’s color lookup table.

• If the physical device uses an RGB color model, the RGB triple is passed
directly to the device.
Using IDL How IDL Interprets Color Values

568 Chapter 20: Working with Color
How IDL Interprets Color Values Using IDL

Chapter 21:

Using Attributes and
Helpers

The following topics are covered in this chapter:
Overview . 570
Font Objects . 571
Palette Objects . 574

Pattern Objects . 575
Symbol Objects . 577
Tessellator Objects 581
Using IDL 569

570 Chapter 21: Using Attributes and Helpers
Overview

Attribute objects are not rendered directly, but are used to determine how graphic
objects will be rendered. There are four attribute object classes: IDLgrFont,
IDLgrPalette, IDLgrPattern, and IDLgrSymbol.

Helper objects perform operations on object instance data. There are two helper
object classes: IDLgrTessellator and Trackball. For additional information the
trackball object, see “Virtual Trackball and 3D Transformations” on page 555.
Overview Using IDL

Chapter 21: Using Attributes and Helpers 571
Font Objects

Font objects allow you to specify the type style and size used when rendering objects
of the IDLgrText class. You can use either TrueType outline fonts or IDL’s built-in
Hershey vector fonts.

Fonts used by font objects are specified in a string constant constructed from a font
name and one or more optional modifiers. The font name is the name by which your
computer system knows the font (Times for the Times Roman font, for example).
Modifiers specify the weight, angle, and other attributes of the font (Bold specifies a
weight, italic an angle). The font name string looks like this:

'fontname*weight*angle*other_modifiers'

where other_modifiers can be any other font property supported by a given font, such
as a slant. For example, the font name string for Helvetica bold italic is:

'helvetica*bold*italic'

The font name string for Times Roman Regular is:

'times'

While the font name must come first in the font name string, the order in which the
modifiers are specified is not important.

IDL’s default font is 12 point Helvetica regular.

See “IDLgrFont” in Appendix A of the IDL Reference Guide for details on creating
font objects.

Determining Available Fonts

Each destination object includes a GetFontnames method, which returns the list of
available fonts that can be used in IDLgrFont objects. This method will only return
the names of the available TrueType fonts. Hershey fonts will not be returned as they
are fixed—see Appendix H, “Fonts” in the IDL Reference Guide for more
information.

Outline Fonts

IDL provides five TrueType outline fonts for use in font objects: Courier, Helvetica,
Monospace Symbol, Symbol, and Times. Your system may support additional
TrueType fonts —use them in the same way as those supplied by IDL.
Using IDL Font Objects

572 Chapter 21: Using Attributes and Helpers
The five TrueType fonts provided by IDL support the following modifiers:

Hershey Fonts

IDL supplies a set of vector fonts designed by Dr. A.J. Hershey. See Appendix H,
“Fonts” in the IDL Reference Guide for information on Hershey fonts.

You can use Hershey fonts when creating font objects by specifying a fontname of
the form Hershey*fontnum to the IDLgrFont::Init method.

Creating Font Objects

Specify a font name string when you create a font object. You can also specify a size,
in points, for the font upon creation. For example, the following statement creates a
font object using a bold version of the Times Roman font, with a size of 20 points:

myFont = OBJ_NEW('IDLgrFont', 'times*bold', SIZE=20)

To create a font object using a Hershey font, omit the font name string and specify the
Hershey font’s index number with the HERSHEY keyword to the IDLgrFont::Init
method. The following statement creates a font object using the Duplex Roman
Hershey font, with a size of 14 points:

myHersheyFont = OBJ_NEW('IDLgrFont', 'hershey*5', SIZE=14)

Using Font Objects

To use a font object, use the FONT keyword to the IDLgrText::Init method (or
change the text object’s font via the SetProperty method):

Font Modifier

Courier bold, italic

Helvetica bold, italic

Monospace Symbol none

Symbol none

Times bold, italic

Table 21-1: TrueType Font Modifiers
Font Objects Using IDL

Chapter 21: Using Attributes and Helpers 573
myText = OBJ_NEW('IDLgrText', 'Ay, Carumba', FONT = myFont)

or

myText -> SetProperty, FONT=myHersheyFont

If no font object is specified, IDL uses the Helvetica font with a size of 12 points.

See “Text Objects” on page 603 for details on creating Text objects.

Font Objects and Resource Use

Because font objects are relatively complex, each font object uses a relatively large
amount of system resources. As a result, it is better to re-use an existing font object
than to create a second identical font object.
Using IDL Font Objects

574 Chapter 21: Using Attributes and Helpers
Palette Objects

Objects of the IDLgrPalette class are used to create color lookup tables. Color lookup
tables assign individual numerical values to color values; this allows you to specify
the color of a graphic object with a single number (a color index) rather than
explicitly providing the red, green, and blue color values (an RGB triple). Palettes are
most useful when you want data values to correspond to color values—that is, if you
want a data value of 200, for example, to always correspond to a single color. This
correspondence is one of the main uses of the Indexed Color Model. See “Indexed
Color Model” in Chapter 20 for additional discussion of indexed color and its uses.

Creating Palette Objects

Specify three vectors representing the red, green, and blue values for the palette when
you call the IDLgrPalette::Init method. The values in the red, green, and blue vectors
must be integers between zero and 255, and the length of each vector must not exceed
256 elements. For example, the following statements create a palette object that
reverses a standard grayscale ramp palette:

rval = (gval = (bval = REVERSE(INDGEN(256))))
myPalette = OBJ_NEW('IDLgrPalette', rval, gval, bval)

See “IDLgrPalette” in Appendix A of the IDL Reference Guide for details on creating
palette objects.

Using Palette Objects

Palettes can be associated either with graphics destination objects (windows or
printers) or with individual graphic atoms:

myWindow -> SetProperty, PALETTE=myPalette

or

myImage -> SetProperty, PALETTE=myPalette

Note
Palettes associated with graphic atoms are only used when the destination object
uses an RGB color model; if the destination object uses an Indexed color model, the
destination object’s palette is always used. See “How IDL Interprets Color Values”
in Chapter 20 for details.
Palette Objects Using IDL

Chapter 21: Using Attributes and Helpers 575
Pattern Objects

Objects of the IDLgrPattern class are used to fill objects of the IDLgrPolygon class.
Pattern objects can create a solid fill (the default), a line fill (with control over the
orientation, spacing, and thickness of the lines used), or a pattern fill (using a byte
pattern you specify). Pattern objects do not have a color of their own; patterns take
their color from the COLOR property of the polygon they fill.

Creating Pattern Objects

Specify a fill-pattern style when you call the IDLgrPattern::Init method. Set the
argument to the Init method equal to zero to create a solid fill, equal to one to create a
line pattern, or equal to two to use a bitmap byte array as the fill pattern. For example,
the following statement creates a pattern object with a solid fill:

myPattern = OBJ_NEW('IDLgrPattern', 0)

The following statement creates a pattern object with lines ten pixels apart, 5 pixels
wide, at an angle of 30 degrees:

myPattern = OBJ_NEW('IDLgrPattern', 1, SPACING=10, THICK=5, $
ORIENTATION=30)

To create a pattern fill, specify a 32-by-4 byte array via the PATTERN property of
the pattern object. The byte array you specify will be tiled over the area of the
polygon to be filled. For example, the following statements create a pattern fill with a
random speckle. The first statement creates a 32-by-4 byte array with random values
ranging between 0 and 255. The second statement creates the pattern object.

pattern = BYTE(RANDOMN(seed, 32, 4)*255)
myPattern = OBJ_NEW('IDLgrPattern', 2, PATTERN=pattern)

See “IDLgrPattern” in Appendix A of the IDL Reference Guide for details on
creating pattern objects.

Using Pattern Objects

To fill a polygon with the pattern specified by a pattern object, set the
FILL_PATTERN property equal to the pattern object reference:

myPolygon -> SetProperty, FILL_PATTERN = myPattern

The following statements create a triangle and fills it with the random speckle
pattern:

pattern = BYTE(RANDOMN(seed, 32, 4)*255)
Using IDL Pattern Objects

576 Chapter 21: Using Attributes and Helpers
myPattern = OBJ_NEW('IDLgrPattern', 2, PATTERN=pattern)
myView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[0,0,10,10])
myModel = OBJ_NEW('IDLgrModel')
myPolygon = OBJ_NEW('IDLgrPolygon', [4, 7, 3], [8, 6, 3],$

color=[255,0,255], fill_pattern=myPattern)
myView -> Add, myModel
myModel -> Add, myPolygon
myWindow = OBJ_NEW('IDLgrWindow')
myWindow -> Draw, myView
Pattern Objects Using IDL

Chapter 21: Using Attributes and Helpers 577
Symbol Objects

Objects of the IDLgrSymbol class are used to display individual data points, either in
an IDLgrPlot object or an IDLgrPolyline object. You can create symbol objects that
display one of seven pre-defined symbols, any atomic graphic object, or any model
object.

Creating Symbol Objects

Specify the type of symbol to use when you call the IDLgrSymbol::Init method.

To Use a Pre-defined Symbol

Specify one of the following values for the symbol type:

• 1 = Plus sign (the default)

• 2 = Asterisk

• 3 = Period

• 4 = Diamond

• 5 = Triangle

• 6 = Square

• 7 = X

For example, to create a symbol object using a red triangle for the symbol, use the
following statement:

mySymbol = OBJ_NEW('IDLgrSymbol', 5, COLOR=[255,0,0])

To Use a Graphic Object as a Symbol

You can use an atomic graphic object or a model object as a symbol. For best results,
create an object that fills the domain between –1 and 1 in all directions. For example,
the following statements create a polygon object in the shape of a pentagon and
define a symbol object to use the polygon:

pentagon=OBJ_NEW('IDLgrPolygon', [-0.8,0.0,0.8,0.4,-0.4], $
[0.2,0.8,0.2,-0.8,-0.8], COLOR=[0,0,255])

mySymbol = OBJ_NEW('IDLgrSymbol', pentagon)

Note that we create the pentagon to fit in the plane between –1 and 1 in both the X
and Y directions. We could also have created the pentagon to fit in a unit square and
then scaled it to fit the domain between –1 and 1.
Using IDL Symbol Objects

578 Chapter 21: Using Attributes and Helpers
For example:

pentagon=OBJ_NEW('IDLgrPolygon', [0.1,0.5,0.9,0.7,0.3], $
[0.6,0.9,0.6,0.1,0.1], COLOR=[0,0,255])

symModel = OBJ_NEW('IDLgrModel')
symModel -> Add, pentagon
symModel -> Scale, 2, 2, 1
symModel -> Translate, -1, -1, 0
mySymbol = OBJ_NEW('IDLgrSymbol', symModel)

Note
We create the symbol object to use the model object rather than the polygon object.
Using a model object as a symbol allows you to apply transformations to the
symbol even after it has been created.

Setting Size

By default, symbols extend one unit to each side of the data point they represent. Set
the SIZE property of the symbol object to a two-element vector that describes the
scaling factor in X and Y to apply to the symbol to change the size of the symbols that
are rendered. For example, to scale a symbol so that it extends one tenth of a unit to
each side of the data point, use the statement:

mySymbol -> SetProperty, SIZE=[0.1, 0.1]

Setting Color

If you are using a pre-defined symbol, you can set its color using the COLOR
property of the symbol object. If you are using a graphic object as a symbol, the
symbol’s color is determined by the color of the graphic object and the setting of the
COLOR property of the symbol object itself is ignored. For example, the following
statements create a symbol object that uses a red triangle:

mySymbol = OBJ_NEW('IDLgrSymbol', 5, COLOR=[255,0,0])

See “IDLgrSymbol” in Appendix A of the IDL Reference Guide for details on
creating symbol objects.

Using Symbol Objects

To use a symbol, set the SYMBOL property of an IDLgrPlot or IDLgrPolyline object
equal to the symbol object reference:

myPlot -> SetProperty, SYMBOL=mySymbol

Suppose you wish to create a symbol object using the pentagon we created above.
Suppose also that you wish to be able to use the pentagon code in more than one
Symbol Objects Using IDL

Chapter 21: Using Attributes and Helpers 579
instance, and would like to be able to make changes to the pentagon object’s color,
size, and orientation. You might create a procedure like the following to define a
pentagon object contained in a model object, and return the object references.

Note
You do not need to enter the example code yourself. The example code shown here
is duplicated in the procedure file penta.pro, located in the examples/visual
subdirectory of the IDL distribution.

;Allow user to set the color and retrieve the object
;references to the symbol, and model objects created.
PRO penta, COLOR=color, SYMBOL=symbol, MODEL=model
;If the color keyword is set, use the specified color.
;Otherwise, use blue.
IF KEYWORD_SET(color) THEN COLOR=color ELSE COLOR=[0,0,255]
;Create a model object.
model = OBJ_NEW('IDLgrModel')
;Create a polygon that takes up most of the domain
;between -1 and 1 in the X and Y directions. Set its color.
symbol = OBJ_NEW('IDLgrPolygon', [-0.8, 0.0, 0.8, 0.4, -0.4], $

[0.2, 0.8, 0.2, -0.8, -0.8], COLOR=color)
;Add the polygon to the model.
model -> ADD, symbol
END

Once you have compiled the penta procedure, call it with the SYMBOL and MODEL
keywords set equal to named variables that will contain the object references of the
model and polygon objects:

PENTA, SYMBOL=sym, MODEL=symmodel

Next, create a symbol object using the pentagon:

mySymbol = OBJ_NEW('IDLgrSymbol', symmodel)

Now, create a plot object using the pentagon as the plot symbol:

myPlot = OBJ_NEW('IDLgrPlot', FINDGEN(10), SYMBOL=mySymbol)

Next, display the plot:

myView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[0,0,10,10])
myModel = OBJ_NEW('IDLgrModel')
myView->Add, myModel
myModel -> Add, myPlot
myWindow = OBJ_NEW('IDLgrWindow')
myWindow -> Draw, myView
Using IDL Symbol Objects

580 Chapter 21: Using Attributes and Helpers
Note that the plotting symbols are larger than you might wish. Try making them
smaller:

mySymbol -> SetProperty, SIZE=[0.2,0.2]
myWindow -> Draw, myView

Or, create the following procedure to spin the pentagons around the z-axis (enter
.RUN at the command prompt, followed by these statements):

PRO SPIN, model, view, window, steps
FOR i = 0, steps do begin

model -> Rotate, [0,0,1], 10
window -> Draw, view

END
END

After compiling the SPIN procedure, call it from the command line and watch the
pentagons spin:

SPIN, symmodel, myView, myWindow, 100

While it is unlikely that you will wish to create spinning plot symbols, this example
demonstrates one of the key advantages of IDL Object Graphics over IDL Direct
Graphics—once created, graphics objects can be easily manipulated in a variety of
ways without the need to recreate the entire graph or image after each change.
Symbol Objects Using IDL

Chapter 21: Using Attributes and Helpers 581
Tessellator Objects

The IDLgrTessellator class is a helper class that converts a simple concave polygon
(or a simple polygon with holes) into a number of simple convex polygons (general
triangles). A polygon is simple if it includes no duplicate vertices, if the edges
intersect only at vertices, and exactly two edges meet at any vertex.

Tessellation is useful because the IDLgrPolygon object accepts only convex
polygons. Using the IDLgrTessellator object, you can convert a concave polygon into
a group of convex polygons.

Creating Tessellator Objects

The IDLgrTessellator::Init method takes no arguments. Use the following statement
to create a tessellator object:

myTess = OBJ_NEW('IDLgrTessellator')

See “IDLgrTessellator” in Appendix A of the IDL Reference Guide for details on
creating tessellator objects.

Using Tessellator Objects

The procedure file obj_tess.pro, located in the examples/visual subdirectory
of the IDL distribution, provides an example of the use of the IDLgrTessellator
object. To run the example, enter OBJ_TESS at the IDL prompt. The procedure
creates a concave polygon, attempts to draw it, and then tessellates the polygon and
re-draws. Finally, the procedure demonstrates adding a hole to a polygon. (You will
be prompted to press Return after each step is displayed.) You can also inspect the
source code in the obj_tess.pro file for hints on using the tessellator object.
Using IDL Tessellator Objects

582 Chapter 21: Using Attributes and Helpers
Tessellator Objects Using IDL

Chapter 22:

Working with Axes
and Text

The following topics are covered in this chapter:
Overview . 584
Axis Objects . 585

Text Objects . 603
Using IDL 583

584 Chapter 22: Working with Axes and Text
Overview

In IDL Object Graphics, axes and titles are not automatically included when plot or
surface objects are created. Instead, you create axis and text objects and place them in
the object hierarchy to annotate your plots and graphs.
Overview Using IDL

Chapter 22: Working with Axes and Text 585
Axis Objects

Axis objects provide a visual notation of data values in two- and three-dimensional
plots and graphs. Each axis is represented by an individual axis object; that is, if you
have a plot in X and Y, you will need to create an x-axis object and a y-axis object.

Note
Axis objects do not take their range values from data values or other objects, as you
might expect if you are familiar with IDL Direct Graphics. Instead, axis objects
have a default range of 0.0 to 1.0; you must explicitly set the range of values
covered by the axis object using the RANGE property.

Creating Axis Objects

To create an axis object, specify an integer argument to the IDLgrAxis::Init method
when calling OBJ_NEW. Specify 0 (zero) to create an x-axis object, 1 (one) to create
a y-axis object, or 2 to create a z-axis object:

xaxis = OBJ_NEW('IDLgrAxis', 0)
yaxis = OBJ_NEW('IDLgrAxis', 1)
zaxis = OBJ_NEW('IDLgrAxis', 2)

The various keywords to the Init method allow you to control the number of major
and minor ticks, the tick length and direction, the data range, and other attributes. For
example, to create an x-axis object whose data range is between –5 and 5, with the
tick marks below the axis line, use the following command:

xaxis = OBJ_NEW('IDLgrAxis', 0, RANGE=[-5.0, 5.0], TICKDIR=1)

To suppress minor tick marks:

xaxis -> SetProperty, MINOR=0

See “IDLgrAxis” in Appendix A of the IDL Reference Guide for details on creating
axis objects.

Using Axis Objects

Suppose you wish to create an X-Y plot of some data and wish to include both x- and
y-axes. First, we create some data to plot, the plot object, and the axis objects:

data = FINDGEN(100)
myplot = OBJ_NEW('IDLgrPlot', data)
xaxis = OBJ_NEW('IDLgrAxis', 0)
yaxis = OBJ_NEW('IDLgrAxis', 1)
Using IDL Axis Objects

586 Chapter 22: Working with Axes and Text
Next, we retrieve the data range from the plot object and set the x- and y-axis objects’
RANGE properly so that the axes will match the data when displayed:

myplot -> GetProperty, XRANGE=xr, YRANGE=yr
xaxis -> SetProperty, RANGE=xr
yaxis -> SetProperty, RANGE=yr

By default, major tickmarks are 0.2 data units in length. Since the data range in this
example is 0 to 99, we set the tick length to 2% of the data range instead:

xtl = 0.02 * (xr[1] - xr[0])
ytl = 0.02 * (yr[1] - yr[0])
xaxis -> SetProperty, TICKLEN=xtl
yaxis -> SetProperty, TICKLEN=ytl

Create model and view objects to contain the object tree, and a window object to
display it:

mymodel = OBJ_NEW('IDLgrModel')
myview = OBJ_NEW('IDLgrView')
mywindow = OBJ_NEW('IDLgrWindow')
mymodel -> Add, myplot
mymodel -> Add, xaxis
mymodel -> Add, yaxis
myview -> Add, mymodel

Use the SET_VIEW procedure to add an appropriate viewplane rectangle to the view
object. (See “Finding an Appropriate View Volume” on page 544 for information on
SET_VIEW).

SET_VIEW, myview, mywindow

Now, display the plot:

mywindow -> Draw, myview

The above example code is included in a procedure file named obj_axis.pro,
located in the examples/visual subdirectory of the IDL distribution. You can run
the example code by entering obj_axis at the IDL prompt. You can also examine
the .pro file itself for examples of some of the topics discussed in this section.
Axis Objects Using IDL

Chapter 22: Working with Axes and Text 587
Logarithmic Axes

Creating a plot of logarithmic data requires that you create a logarithmic axis as well.
The following example first creates a linear plot, then takes a logarithm of the same
data and creates a log-linear plot.

The example code below is included in a procedure file named obj_logaxis.pro,
located in the examples/visual subdirectory of the IDL distribution. You can run
the example code by entering obj_logaxis at the IDL prompt. You can also
examine the .pro file itself for examples of some of the topics discussed in this
section.

;Create a window and a view.
PRO obj_logaxis
oWindow = OBJ_NEW('IDLgrWindow')

;Create a model for the graphics; add to the view.
oView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[-0.2,-0.2,1.4,1.4])
oModel = OBJ_NEW('IDLgrModel')

Figure 22-1: Axis Object
Using IDL Axis Objects

588 Chapter 22: Working with Axes and Text
oView->Add, oModel

;Create some simple data:
yData = FINDGEN(50)*20.

;Compute data range in X and Y:
yMin = MIN(yData, MAX=yMax)
yRange = yMax - yMin
xMin = 0
xMax = N_ELEMENTS(yData)-1
xRange = xMax - xMin

;Create an X-axis with a title:
oXTitle = OBJ_NEW('IDLgrText', 'Linear X Axis')
oXAxis = OBJ_NEW('IDLgrAxis', 0, RANGE=[xmin,xmax], $

TICKLEN=(0.1*yRange), TITLE=oXTitle)
oModel->Add, oXAxis

;Create a Y-axis with a title:
oYTitle = OBJ_NEW('IDLgrText', 'Linear Y Axis')
oYAxis = OBJ_NEW('IDLgrAxis', 1, RANGE=[yMin,yMax], $

TICKLEN=(0.1*xRange), TITLE=oYTitle)
oModel->Add, oYAxis

;Create a plot of the data:
oPlot = OBJ_NEW('IDLgrPlot', yData, COLOR=[255,0,0])
oModel->Add, oPlot

;Scale and translate the model so the plot fits within the view:
oModel->Scale, 1.0/xRange, 1.0/yRange, 1.0
oModel->Translate, -(xMin/xRange), -(yMin/yRange), 0.0

;Ensure that axis text recomputes its dimensions as needed:
oXAxis->GetProperty, TICKTEXT=oXTickText
oXTitle->SetProperty, RECOMPUTE_DIMENSIONS=2
oXTickText->SetProperty, RECOMPUTE_DIMENSIONS=2
oYAxis->GetProperty, TICKTEXT=oYTickText
oYTickText->SetProperty, RECOMPUTE_DIMENSIONS=2
oYTitle->SetProperty, RECOMPUTE_DIMENSIONS=2

;Draw the plot:
oWindow->Draw, oView

;Refresh the plot when ready:
val=''
READ, val, PROMPT='Press <Return> to refresh the window.'
oWindow->Draw, oView

;Now that the original plot has been displayed,
Axis Objects Using IDL

Chapter 22: Working with Axes and Text 589
;switch to a logarithmic version of the plot when ready:
READ, val, $

PROMPT='Press <Return> to draw with a logarithmic Y axis.'

;Only positive values are valid when computing
;the logarithmic data:
posElts = WHERE(yData GT 0, nPos)
IF (nPos GT 0) THEN BEGIN

;Compute new Y range:
yValidData = yData(posElts)
yValidMin = MIN(yValidData, MAX=yValidMax)

;Compute logarithmic data:
yLogData = ALOG10(yValidData)

;Update the plot data:
oPlot->Setproperty, DATAY=yLogData

ENDIF ELSE BEGIN
MESSAGE, 'Original plot data is entirely non-positive.', $

/INFORMATIONAL
MESSAGE, 'Log plot will contain no data.', /NOPREFIX, $

/INFORMATIONAL

;Create a fake log axis range:
yValidMin = 1.0
yValidMax = 10.0

;Simply hide the plot, since no valid log data exists:
oPlot->SetProperty, /HIDE

ENDELSE

;Update the Y axis to be logarithmic, and modify the Y axis title:
oYAxis->SetProperty, /LOG, RANGE=[yValidMin, yValidMax]
oYTitle->SetProperty, STRING='Logarithmic Y Axis'

;Get the new Y axis logarithmic range:
oYAxis->GetProperty, CRANGE=crange
yLogMin = crange[0]
yLogMax = crange[1]
yLogRange = yLogMax - yLogMin

;Update the X axis ticklen:
oXAxis->SetProperty, TICKLEN=(0.1*yLogRange), $

LOCATION=[0,yLogMin,0]

;Update the model transform to match the new data ranges:
oModel->Reset
oModel->Scale, 1.0/xRange, 1.0/yLogRange, 1.0
oModel->Translate, -(xMin/xRange), -(yLogMin/yLogRange), 0.0
Using IDL Axis Objects

590 Chapter 22: Working with Axes and Text
oWindow->Draw, oView
READ, val, PROMPT='Press <Return> to quit.'
OBJ_DESTROY, oView
OBJ_DESTROY, oWindow
OBJ_DESTROY, oXTitle
OBJ_DESTROY, oYTitle
END

Figure 22-2: Logarithmic Axes
Axis Objects Using IDL

Chapter 22: Working with Axes and Text 591
Date/Time Axes

Dates and times are among the many types of information that numerical data can
represent. IDL provides a number of routines that offer specialized support for
generating, analyzing, and displaying date- and time- based data (herein referred to as
date/time data).

Julian Dates and Times

Within IDL, dates and times are typically stored as Julian dates. A Julian date is
defined to be the number of days elapsed since noon on January 1, 4713 BCE.
Following the astronomical convention, a Julian day is defined to start at 12pm
(noon). The following table shows a few examples of calendar dates and their
corresponding Julian dates.

Julian dates can also include fractional portions of a day, thereby incorporating hours,
minutes, and seconds. If the day fraction is included in a Julian date, it is represented
as a double-precision floating point value. The day fraction is computed as follows:

One advantage of using Julian dates to represent dates and times is that a given
date/time can be stored within a single variable (rather than storing the year, month,
day, hour, minute, and second information in six different variables). Because each
Julian date is simply a number, IDL’s numerical routines can be applied to Julian
dates just as for any other type of number.

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000, respectively.

Calendar Date Julian Date

January 1, 4713 B.C.E., at 12pm 0

January 2, 4713 B.C.E., at 12pm 1

January 1, 2000 at 12pm 2451545

Table 22-1: Example Julian Dates

dayFraction
hour
24.d
------------ minute

1440.d
------------------ ondssec

86400.d
---------------------+ +=
Using IDL Axis Objects

592 Chapter 22: Working with Axes and Text
Precision of Date/Time Data

The precision of any numerical value is defined as the smallest possible number that
can be added to that value that produces a new value different from the first.
Precision is typically limited by the data type of the variable used to store the number
and the magnitude of the number itself. Within IDL, the following guide should be
used when choosing a data format for date/time data:

• Time values that require a high precision, and that span a range of a few days
or less, should be stored as double-precision values in units of “time elapsed”
since the starting time, rather than in Julian date format. An example would be
the “seconds elapsed” since the beginning of an experiment. In this case, the
data can be treated within IDL as standard numeric data without the need to
utilize IDL’s specialized date/time features.

• Date values that do not include the time of day may be stored as long-integer
Julian dates. The Julian date format has the advantage of being compact (one
value per date) and being evenly spaced in days. As an example, January 1st
for the years 2000, 2001, and 2002 can be stored as Julian days 2451545,
2451911, and 2452276. The precision of this format is 1 day.

• Date values where it is necessary to include the time of day can be stored as
double-precision Julian dates, with the time included as a day fraction.
Because of the large magnitude of the Julian date (such as Julian day 2451545
for 1 January 2000), the precision of most Julian dates is limited to 1
millisecond (0.001 seconds).

To determine the precision of a Julian date/time value, you can use the IDL
MACHAR function:

; Set date to January 1, 2000, at 12:15pm
julian = JULDAY(1,1,2000,12,15,0)

; Get machine characteristics
machine = MACHAR(/DOUBLE)

; Multiply by floating-point precision
precision = julian*machine.eps

; Convert to seconds
PRINT, precision*86400d0

How to Generate Date/Time Data

The TIMEGEN function returns an array of double precision floating point values
that represent date/time in terms of Julian dates. The first value of the returned array
corresponds to a start date/time, and each subsequent value corresponds to the start
Axis Objects Using IDL

Chapter 22: Working with Axes and Text 593
date/time plus that array element's one-dimensional subscript multiplied by a step
size for a given date/time unit. Unlike the other array generation routines in IDL,
TIMEGEN includes a START keyword, which is necessary if the starting date/time
is originally provided in calendar (month, day, year) form.

The following example begins with a start date of March 1, 2000 and increments
every month for a full year:

date_time = TIMEGEN(12, UNIT = 'Months', $
START = JULDAY(3, 1, 2000))

where the UNIT keyword is set to 'Months' to increment by month and the START
keyword is set to the Julian date form of March 1, 2000.

The results of the above call to TIMEGEN can be output using either of the following
methods:

1. Using the CALDAT routine to convert the Julian dates to calendar dates:

CALDAT, date_time, month, day, year
FOR i = 0, (N_ELEMENTS(date_time) - 1) DO PRINT, $

month[i], day[i], year[i], $
FORMAT = '(i2.2, "/", i2.2, "/", i4)'

2. Using the calendar format codes:

PRINT, date_time, format = '(C(CMOI2.2, "/", CDI2.2, "/", CYI))'

The resulting calendar dates are printed out as follows:

03/01/2000
04/01/2000
05/01/2000
06/01/2000
07/01/2000
08/01/2000
09/01/2000
10/01/2000
11/01/2000
12/01/2000
01/01/2001
02/01/2001

The TIMEGEN routine contains several keywords to provide specific date/time data
generation. For more information, see the TIMEGEN in the IDL Reference Guide.

Displaying Date/Time Data on an Axis in Object Graphics

You can display date/time data on plots, contours, and surfaces through the tick
settings of the date/time axis. Date/time data can be displayed on any axis (x, y or z).
Using IDL Axis Objects

594 Chapter 22: Working with Axes and Text
The date/time data is stored as Julian dates, but the LABEL_DATE routine and axis
keywords allow you to display this data as calendar dates. The following examples
show how to display one-dimensional and two-dimensional date/time data.

Displaying Date/Time Data on a Plot Display

Date/time data usually comes from measuring data values at specific times. For
example, the displacement (in inches) of an object might be recorded at every second
for 37 seconds after the initial recording of 59 minutes and 30 seconds after 2 o'clock
pm (14 hundred hours) on the 30th day of March in the year 2000 as follows

number_samples = 37
date_time = TIMEGEN(number_samples, UNITS = 'Seconds', $

START = JULDAY(3, 30, 2000, 14, 59, 30))
displacement = SIN(10.*!DTOR*FINDGEN(number_samples))

Normally, this type of data would be imported into IDL from a data file. However,
this section is designed specifically to show how to display date/time data, not how to
import data from a file; therefore, the data for this example is created with the above
IDL commands.

Before displaying this one-dimensional data with the IDLgrPlot object, the format of
the date/time values is specified through the LABEL_DATE routine:

date_label = LABEL_DATE(DATE_FORMAT = ['%I:%S'])

where %I represents minutes and %S represents seconds.

Before applying the results from LABEL_DATE, we must first create (initialize) our
display objects:

oPlotWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = [800, 600])

oPlotView = OBJ_NEW('IDLgrView', /DOUBLE)
oPlotModel = OBJ_NEW('IDLgrModel')
oPlot = OBJ_NEW('IDLgrPlot', date_time, displacement, $

/DOUBLE)

The oPlotModel object will contain the IDLgrPlot and IDLgrAxis objects. The
oPlotView object contains the oPlotModel object with the DOUBLE keyword. The
DOUBLE keyword is set for the oPlotView and oPlot objects because the date/time
data is made up of double-precision floating-point values.

Although the date/time part of the data will actually be contained and displayed
through the IDLgrAxis object, the oPlot object is created first to provide a display
region for the axes:

oPlot -> GetProperty, XRANGE = xr, YRANGE = yr
xs = NORM_COORD(xr)
Axis Objects Using IDL

Chapter 22: Working with Axes and Text 595
xs[0] = xs[0] - 0.5
ys = NORM_COORD(yr)
ys[0] = ys[0] - 0.5
oPlot -> SetProperty, XCOORD_CONV = xs, YCOORD_CONV = ys

The NORM_COORD routine is used to create a normalized (0 to 1) display
coordinate system. This coordinate system will also apply to the IDLgrAxis objects:

; X-axis title.
oTextXAxis = OBJ_NEW('IDLgrText', 'Time (seconds)')
; X-axis (date/time axis).
oPlotXAxis = OBJ_NEW('IDLgrAxis', 0, /EXACT, RANGE = xr, $

XCOORD_CONV = xs, YCOORD_CONV = ys, TITLE = oTextXAxis, $
LOCATION = [xr[0], yr[0]], TICKDIR = 0, $
TICKLEN = (0.02*(yr[1] - yr[0])), $
TICKFORMAT = ['LABEL_DATE'], TICKINTERVAL = 5, $
TICKUNITS = ['Time'])

; Y-axis title.
oTextYAxis = OBJ_NEW('IDLgrText', 'Displacement (inches)')
; Y-axis.
oPlotYAxis = OBJ_NEW('IDLgrAxis', 1, /EXACT, RANGE = yr, $

XCOORD_CONV = xs, YCOORD_CONV = ys, TITLE = oTextYAxis, $
LOCATION = [xr[0], yr[0]], TICKDIR = 0, $
TICKLEN = (0.02*(xr[1] - xr[0])))

; Plot title.
oPlotText = OBJ_NEW('IDLgrText', 'Measured Signal', $

LOCATIONS = [(xr[0] + xr[1])/2., $
(yr[1] + (0.02*(yr[0] + yr[1])))], $

XCOORD_CONV = xs, YCOORD_CONV = ys, $
ALIGNMENT = 0.5)

The TICKFORMAT, TICKINTERVAL, and TICKUNITS keywords specify the X-
axis as a date/time axis.

These objects are now added to the oPlotModel object and this model is added to the
oPlotView object:

oPlotModel -> Add, oPlot
oPlotModel -> Add, oPlotXAxis
oPlotModel -> Add, oPlotYAxis
oPlotModel -> Add, oPlotText
oPlotView -> Add, oPlotModel

Now the oPlotView object, which contains all of these objects, can be viewed in the
oPlotWindow object:

oPlotWindow -> Draw, oPlotView
Using IDL Axis Objects

596 Chapter 22: Working with Axes and Text
The Draw method to the oPlotWindow object produces the following results:

The above display shows the progression of the date/time variable, but it does not
include all of the date/time data we generated with the TIMEGEN routine. This data
also includes hour, month, day, and year information. IDL can display this
information with additional levels to the date/time axis. You can control the number
of levels to draw and the units used at each level with the TICKUNITS keyword. You
can specify the formatting for these levels by changing the DATE_FORMAT
keyword setting to the LABEL_DATE routine:

date_label = LABEL_DATE(DATE_FORMAT = $
['%I:%S', '%H', '%D %M, %Y'])

where %H represents hours, %D represents days, %M represents months, and %Y
represents years. Notice DATE_FORMAT is specified with a three-element vector.
Date/time data can be displayed on an axis with three levels. The format of these
levels are specified through this vector.

In this example, the first level (closest to the axis) will contain minute and second
values separated by a colon (%I:%S). The second level (just below the first level) will
contain the hour values (%H). The third level (the final level farthest from the axis)
will contain the day and month values separated by a space and year value separated
from the day and month values by a comma (%D %M, %Y). For more information,
see LABEL_DATE in the IDL Reference Guide.

Figure 22-3: Displaying Date/Time data with IDLgrPlot
Axis Objects Using IDL

Chapter 22: Working with Axes and Text 597
Besides the above change to the LABEL_DATE routine, we must also change the
settings of the IDLgrAxis properties to specify a multiple level axis:

oPlotXAxis -> SetProperty, $
TICKFORMAT = ['LABEL_DATE', 'LABEL_DATE', 'LABEL_DATE'], $
TICKUNITS = ['Time', 'Hour', 'Day']

The TICKFORMAT is now set to a string array containing an element for each level
of the axis. The TICKUNITS keyword is set to note the unit of each level. These
property settings produce the following results:

Notice the three levels of the X-axis. These levels are arranged as specified by the
previous call to the LABEL_DATE routine.

To maintain IDL’s memory, the object references for oPlotView, oTextXAxis, and
oTextYAxis should be destroyed. Therefore, after the display is drawn, the
OBJ_DESTROY routine should be called:

OBJ_DESTROY, [oPlotView, oTextXAxis, oTextYAxis]

The display will remain until closed, but the object references are now freed from
IDL’s memory.

Displaying Date/Time Data on a Contour Display

Another possible example may be the surface temperature (in degrees Celsius) of
each degree of a single circle on a sphere recorded at every second for 37 seconds

Figure 22-4: Displaying Three Levels of Date/Time data with IDLgrPlot
Using IDL Axis Objects

598 Chapter 22: Working with Axes and Text
after the initial recording of 59 minutes and 30 seconds after 2 o’clock pm (14
hundred hours) on the 30th day of March in the year 2000:

number_samples = 37
date_time = TIMEGEN(number_samples, UNITS = 'Seconds', $

START = JULDAY(3, 30, 2000, 14, 59, 30))
angle = 10.*FINDGEN(number_samples)
temperature = BYTSCL(SIN(10.*!DTOR* $

FINDGEN(number_samples)) # COS(!DTOR*angle))

As with the one-dimensional case, the format of the date/time values is specified
through the LABEL_DATE routine as follows:

date_label = LABEL_DATE(DATE_FORMAT = $
['%I:%S', '%H', '%D %M, %Y'])

where %I represents minutes, %S represents seconds, %H represents hours, %D
represents days, %M represents months, and %Y represents years.

The first level (closest to the axis) will contain minute and second values separated
by a colon (%I:%S). The second level (just below the first level) will contain the hour
values(%H). The third level (the final level farthest from the axis) will contain the
day and month values separated by a space and year value separated from the day and
month values by a comma (%D %M, %Y).

Since the final contour display will be filled, we should define a color palette:

oContourPalette = OBJ_NEW('IDLgrPalette')
oContourPalette -> LoadCT, 5

As in the one-dimensional example, the display must be initialized:

oContourWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = [800, 600])

oContourView = OBJ_NEW('IDLgrView', /DOUBLE)
oContourModel = OBJ_NEW('IDLgrModel')
oContour = OBJ_NEW('IDLgrContour', temperature, $

GEOMX = angle, GEOMY = date_time, GEOMZ = 0., $
/PLANAR, /FILL, PALETTE = oContourPalette, $
/DOUBLE_GEOM, C_VALUE = BYTSCL(INDGEN(8)), $
C_COLOR = BYTSCL(INDGEN(8)))

; Applying contour lines over the original contour display.
oContourLines = OBJ_NEW('IDLgrContour', temperature, $

GEOMX = angle, GEOMY = date_time, GEOMZ = 0.001, $
/PLANAR, /DOUBLE_GEOM, C_VALUE = BYTSCL(INDGEN(8)))

The oContourModel object will contain the IDLgrContour and IDLgrAxis objects.
The oContourView object contains the oContourModel with the DOUBLE keyword.
The DOUBLE and DOUBLE_GEOM keywords are set for the oContourView and
Axis Objects Using IDL

Chapter 22: Working with Axes and Text 599
oContour objects because date/time data is made up of double-precision floating-
point values.

Although the date/time part of the data will actually be contained and displayed
through the IDLgrAxis object, the oContour object is created first to provide a
display region for the axes:

oContour -> GetProperty, XRANGE = xr, YRANGE = yr, ZRange = zr
xs = NORM_COORD(xr)
xs[0] = xs[0] - 0.5
ys = NORM_COORD(yr)
ys[0] = ys[0] - 0.5
oContour -> SetProperty, XCOORD_CONV = xs, YCOORD_CONV = ys
oContourLines -> SetProperty, XCOORD_CONV = xs, YCOORD_CONV = ys

The oContourLines object is created to display contour lines over the filled contours.
Note these lines have a GEOMZ difference of 0.001 from the filled contours. This
difference is provided to display the lines over the filled contours and not in the same
view plane. The NORM_COORD routine is used to create a normalized (0 to 1)
display coordinate system. This coordinate system will also apply to the IDLgrAxis
objects:

; X-axis title.
oTextXAxis = OBJ_NEW('IDLgrText', 'Angle (degrees)')
; X-axis.
oContourXAxis = OBJ_NEW('IDLgrAxis', 0, /EXACT, RANGE = xr, $

XCOORD_CONV = xs, YCOORD_CONV = ys, TITLE = oTextXAxis, $
LOCATION = [xr[0], yr[0], zr[0] + 0.001], TICKDIR = 0, $
TICKLEN = (0.02*(yr[1] - yr[0])))

; Y-axis title.
oTextYAxis = OBJ_NEW('IDLgrText', 'Time (seconds)')
; Y-axis (date/time axis).
oContourYAxis = OBJ_NEW('IDLgrAxis', 1, /EXACT, RANGE = yr, $

XCOORD_CONV = xs, YCOORD_CONV = ys, TITLE = oTextYAxis, $
LOCATION = [xr[0], yr[0], zr[0] + 0.001], TICKDIR = 0, $
TICKLEN = (0.02*(xr[1] - xr[0])), $
TICKFORMAT = ['LABEL_DATE', 'LABEL_DATE', 'LABEL_DATE'], $
TICKUNITS = ['Time', 'Hour', 'Day'], $
TICKLAYOUT = 2)

oContourText = OBJ_NEW('IDLgrText', $
'Measured Temperature (degrees Celsius)', $
LOCATIONS = [(xr[0] + xr[1])/2., $

(yr[1] + (0.02*(yr[0] + yr[1])))], $
XCOORD_CONV = xs, YCOORD_CONV = ys, $
ALIGNMENT = 0.5)

The TICKFORMAT, TICKINTERVAL, and TICKUNITS keywords specify the Y-
axis as a date/time axis, which contains three levels related to the formats presented
Using IDL Axis Objects

600 Chapter 22: Working with Axes and Text
in the call to the LABEL_DATE routine. This example also contains the
TICKLAYOUT keyword. By default, this keyword is set to 0, which provides the
date/time layout shown in the plot example. In this example, TICKLAYOUT is set to
2, which rotates and boxes the tick labels.

These objects are now added to the oContourModel object and this model is added to
the oContourView object:

oContourModel -> Add, oContour
oContourModel -> Add, oContourLines
oContourModel -> Add, oContourXAxis
oContourModel -> Add, oContourYAxis
oContourModel -> Add, oContourText
oContourView -> Add, oContourModel

Now the oContourView object, which contains all of these objects, can be viewed in
the oContourWindow object:

oContourWindow -> Draw, oContourView

The Draw method to oContourWindow produces the following results:

Notice the three levels of the Y-axis. These levels are arranged as specified by the
previous call to the LABEL_DATE routine.

To maintain IDL's memory, the object references for oContourView, oContourPalette,
oTextXAxis, and oTextYAxis should be destroyed. Therefore, after the display is
drawn, the OBJ_DESTROY routine should be called:

Figure 22-5: Displaying Date/Time data with IDLgrContour
Axis Objects Using IDL

Chapter 22: Working with Axes and Text 601
OBJ_DESTROY, [oContourView, oContourPalette, $
oTextXAxis, oTextYAxis]

The display will remain until closed, but the object references are now freed from
IDL's memory.

Axis Titles and Tickmark Text

You can supply an axis title for an axis by setting the TITLE property equal to the
object reference of an IDLgrText object. Text objects connected to axis objects via
the TITLE property are automatically centered under or next to the axis they belong
with.

Note
Titles and tickmark text inherit the color specified for the IDLgrAxis object itself,
even if the COLOR property is specified for the IDLgrText object specified, unless
the USE_TEXT_COLOR property for the axis is nonzero.

By default, major tick marks are labelled with the data values. You can supply a set
of tickmark text values by setting the TICKTEXT property equal to either a single
instance of an IDLgrText object containing a vector of text strings or to a vector of
IDLgrText objects, each of which contains a single text string.

Note
Make sure that you have the same number of tick label strings as there are major
tick marks for the axis.

Reverse Axis Plotting

IDL also allows you to plot data in Object Graphics by reversing the order of axis tick
values. This is known as reverse axis plotting.

When using Object Graphics, each core object is a building block. Any number of
building blocks may be combined together in a hierarchical tree to create an overall
scene. An individual object is not aware of the other objects in the hierarchy;
therefore, the designer of the hierarchy must control all interactions between the
objects. For example, to properly display a reverse axis plot in Object Graphics, the
designer must appropriately set the properties on the X axis, the Y axis, and the plot
line, each of which contribute to the overall displayed results.

The following figure demonstrates how you can reverse the order of axis tick values
using Object Graphics. You can run this example by entering
Using IDL Axis Objects

602 Chapter 22: Working with Axes and Text
EX_REVERSE_PLOT.PRO at the IDL command line. You can view the source for this
example, EX_REVERSE_PLOT.PRO, in the examples/visual directory.

Figure 22-6: Reverse Axis Plotting Example
Axis Objects Using IDL

Chapter 22: Working with Axes and Text 603
Text Objects

Text objects contain string values that are drawn to the destination object at a location
you specify. You have control over the font used (via an IDLgrFont object), the angle
of the text baseline, and the vertical direction of the text.

Creating Text Objects

To create a text object, specify a string or an array of strings to the IDLgrText:Init
method when calling OBJ_NEW.

mytext = OBJ_NEW('IDLgrText', 'A Text String')

or

mytextarr = OBJ_NEW('IDLgrText', $
['First String', 'Second String', 'Third String'])

See “IDLgrText” in Appendix A of the IDL Reference Guide for details on creating
text objects.

Using Text Objects

Creating text annotations in their simplest form—two-dimensional text displayed at a
given location—involves only specifying the text, and the location. For example, to
display the words Text String in a window in the default font, the following
statements suffice:

mywindow = OBJ_NEW('IDLgrWindow', DIMENSIONS=[400,400])
myview = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[0,0,10,10])
mymodel = OBJ_NEW('IDLgrModel')
mytext = OBJ_NEW('IDLgrText', 'Text String', LOCATION=[4,4], $

COLOR=[50,100,150])
myview -> Add, mymodel
mymodel -> Add, mytext
mywindow -> Draw, myview

The text is drawn at the specified location, with the baseline parallel to the x-axis.

Location and Alignment

Specifying a location via the LOCATION property picks a point in space where the
text object will be placed. By default, text objects are aligned with their lower left
edge located at the point specified by the LOCATION property.

You can change the horizontal position of the text object with respect to the point
specified by LOCATION by changing the ALIGNMENT property to a floating-point
Using IDL Text Objects

604 Chapter 22: Working with Axes and Text
value between 0.0 and 1.0. The default value (0.0) aligns and left-justifies text at the
location specified. Setting ALIGNMENT to 1.0 right-justifies the text; setting it to
0.5 centers the text above the point specified. The vertical position with respect to
location can also be set using the VERTICAL_ALIGNMENT property. The default
value (0.0) bottom-justifies the text at the given location. A vertical alignment of 1.0
top-justifies the text.

3D Text and Text “On the Glass”

Text objects, like all graphics atoms, are located and oriented in three-dimensional
space. (We often ignore the third dimension when making simple plots and graphs—
in these cases we simply use the default z value of zero.) With text objects, however,
there is an option to project text on the glass.

Projecting text on the glass ensures that it is displayed as if it were in flat, two-
dimensional space no matter what its true orientation in three-dimensional space may
be. In cases where text objects may be rotated at arbitrary angles, projecting on the
glass ensures that the text will be readable.

To project text on the glass, set the ONGLASS property of the text object to a value
other than zero.

Baseline

The text baseline can be altered from its default orientation (parallel to the x-axis) by
setting the text object’s BASELINE property to a two- or three-element array. The
new baseline will be oriented parallel to a line drawn between the origin and the
coordinates specified. For example, the following statement makes the text baseline
parallel to a line drawn between the points [0, 0] and [1, 2]:

Figure 22-7: 3D Text and Text “On the Glass”
Text Objects Using IDL

Chapter 22: Working with Axes and Text 605
mytext -> SetProperty, BASELINE=[1,2]

The following statement makes the baseline parallel to a line drawn between the
origin and a point located at [2, 1, 3]:

mytext -> SetProperty, BASELINE=[2,1,3]

Notice that the orientation of the baseline is only an orientation; changing value of
the BASELINE property does not change the location of the text object.

Upward Direction

In addition to the baseline orientation, you can control the upward direction of the
text object. (The upward direction is the direction defined by a vector pointing from
the origin to the point specified.) The upward direction defines the plane on which
text is drawn; by specifying a baseline and an upward direction, you define the plane.

Note
The upward direction does not specify a slant angle. That is, even if you specify a
direction that is not perpendicular to the baseline for the upward direction, the text
will still be perpendicular to the baseline. All that matters is the plane defined by the
baseline and upward direction.

For example, in the default situation, the baseline is oriented parallel to the x-axis,
and the upward direction is parallel to the y-axis, pointing in the positive y direction.

Figure 22-8: Baseline
Using IDL Text Objects

606 Chapter 22: Working with Axes and Text
Warning
If the baseline and upward direction are coincident—that is, if they do not define a
plane on which to draw the text—IDL generates an error message.

Fonts

The type style and size of the characters displayed in a text object are controlled by
the FONT property. Set the FONT property equal to the object reference of an
IDLgrFont object to use that font’s properties for the text object. If no font object is
specified, IDL uses the default font (12 point Helvetica regular).

Font objects are discussed in “Font Objects” on page 571.

A Text Example

An example procedure named rot_text.pro is included in the
examples/visual subdirectory of the IDL distribution. This file creates a simple
text string, rotates it around the y- and z-axes using the BASELINE and UPDIR
properties, and displays several different fonts.

You can run the example code by entering rot_text at the IDL prompt. You can
also examine the .pro file itself for examples of some of the topics discussed in this
section.
Text Objects Using IDL

Chapter 23:

Working with Plots
and Graphs

This chapter describes the use of contour, polygon, polyline, and plot objects to create plots and
graphs. The following topics are covered in this chapter:
Contour Objects . 608
Polygon Objects . 610
Polyline Objects . 615

Plot Objects . 616
Legend Objects . 620
A Plotting Routine 623
Using IDL 607

608 Chapter 23: Working with Plots and Graphs
Contour Objects

Contour objects create a set of contour lines from data stored in a rectangular array or
in a set of unstructured points. Contour objects can consist either of lines or of filled
regions.

Creating Contour Objects

To create a contour object, provide a vector or two-dimensional array containing the
values to be contoured to the IDLgrContour::Init method. For example, the following
statement creates a contour from a two-dimensional array returned by the IDL DIST
function:

mycontour = OBJ_NEW('IDLgrContour', DIST(20))

See “IDLgrContour” in Appendix A of the IDL Reference Guide for details on
creating contour objects.

Using Contour Objects

Contour objects have a number of properties that determine how they are rendered.
See “IDLgrContour::Init” in Appendix A of the IDL Reference Guide for a complete
listing. The following code displays the contour object created above in the X-Y
plane.

Note
In order to display the contour as on the plane (rather than as a three-dimensional
image), you must set the PLANAR property of the contour object equal to one and
explicitly set the GEOMZ property equal to zero.

mywindow = OBJ_NEW('IDLgrWindow')
myview = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[0,0,19,19])
mymodel = OBJ_NEW('IDLgrModel')
data = DIST(20)
mycontour = OBJ_NEW('IDLgrContour', data, COLOR=[100,150,200], $

C_LINESTYLE=[0,2,4], /PLANAR, GEOMZ=0, C_VALUE=INDGEN(20))

myview -> Add, mymodel
mymodel -> Add, mycontour
mywindow -> Draw, myview
Contour Objects Using IDL

Chapter 23: Working with Plots and Graphs 609
A more complex example using a contour object is shown in the contour demo. To
start the demos, type demo at the IDL command prompt. Both the terrain elevation
and vehicle tire data sets are displayed using the contour object.

Figure 23-1: Contour Object

Figure 23-2: Complex Contour Object
Using IDL Contour Objects

610 Chapter 23: Working with Plots and Graphs
Polygon Objects

Polygon objects represent one or more filled polygons that share a given set of
vertices and rendering attributes. All polygons must be simple (the edges of the
polygon should not intersect) and convex (the shape of the polygon should not have
any indentations). Concave polygons can be converted into convex polygons using
the helper object IDLgrTessellator. See “Tessellator Objects” on page 581 for more
on tessellator objects.

Creating Polygon Objects

To create a polygon object, provide a two- or three-dimensional array (or two or three
vectors) containing the locations of the polygon’s vertices to the IDLgrPolygon::Init
method. For example, the following statement creates a square with sides one unit in
length, with the lower left corner at the origin:

mypolygon = OBJ_NEW('IDLgrPolygon', [[0,0], [0,1], [1,1], [1,0]])

See “IDLgrPolygon” in Appendix A of the IDL Reference Guide for details on
creating polygon objects.

Using Polygon Objects

Polygon objects have numerous properties controlling how they are rendered. You
can set these properties when creating the polygon object, or use the SetProperty
method to the polygon object to change these properties after creation.

Style

Set the STYLE property to an integer value that controls how the polygon is
rendered. Set the STYLE property equal to 0 (zero) to render only the vertices. The
following statement changes the polygon to display only the vertex points, in blue:

mypolygon -> SetProperty, STYLE=0, COLOR=[0,0,255]

Set the STYLE property equal to 1 (one) to render the vertices and lines connecting
them. The following statement draws the polygon’s outline in green:

mypolygon -> SetProperty, STYLE=1, COLOR=[0,255,0,]

The default setting for the STYLE property is 2, which produces a filled polygon.
The following statement draws the filled polygon in red:

mypolygon -> SetProperty, STYLE=2, COLOR=[255,0,0]
Polygon Objects Using IDL

Chapter 23: Working with Plots and Graphs 611
Vertex Colors

You can supply a vector of vertex colors via the VERT_COLORS property. The
colors in the vector will be applied to each vertex in turn. If there are more vertices
than colors supplied for the VERT_COLORS property, IDL will cycle through the
colors. For example, the following statements color each vertex and connecting line
one of four colors:

vcolors =[[0,100,200],[200,150,200],[150,200,250],[250,0,100]]
mypolygon -> SetProperty, STYLE=1, VERT_COLORS=vcolors

Fill Patterns

As demonstrated in “Pattern Objects” on page 575, you can fill a polygon with a
pattern contained in an IDLgrPattern object. Set the FILL_PATTERN property equal
to the object reference of the pattern object. If you have created a pattern object called
mypattern, the following statement uses that pattern as the polygon’s fill pattern:

mypolygon -> SetProperty, STYLE=2, FILL_PATTERN=mypattern

Shading

IDL provides two types of shading for filled objects. In Flat shading, the color of the
first vertex in each polygon is used to define the color for the entire polygon. The
polygon color has a constant intensity. In Gouraud shading, the colors along each line
are interpolated between vertex colors, and then along scanlines from each of the
edge intensities.

Set the SHADING property of the polygon object equal to 0 (zero) to use flat shading
(this is the default), or equal to 1 (one) to use Gouraud shading. In the above example
using vertex colors, adding the following statement:

mypolygon -> SetProperty, STYLE=2, SHADING=1

creates a polygon fill in which the color values are interpolated between the vertex
colors.

Texture Mapping

You can map an image onto a polygon object by specifying an IDLgrImage object to
the TEXTURE_MAP property. The TEXTURE_COORD property defines how
individual data points within the image data are mapped to the polygon’s vertices.
Note that you must specify both TEXTURE_MAP and TEXTURE_COORD to
enable texture mapping.
Using IDL Polygon Objects

612 Chapter 23: Working with Plots and Graphs
Polygon Mesh Optimization

IDLgrPolygon objects consist of a set of vertices and, optionally—via the
POLYGON keyword—a connectivity array describing how those vertices are to be
connected to form one or more polygons. Internally, IDL can identify three special
types of polygonal meshes that may be represented very efficiently and therefore
displayed substantially faster than individually described polygons. These special
mesh types are characterized by repetitive patterns in the connectivity of the vertices.
In performance terms, it is to the users advantage to utilize this optimization
whenever possible by appropriately preparing the connectivity list according to the
rules described for the corresponding type of mesh. The special mesh types are as
follows:

Quad Strips

A quad strip is a connected set of four-sided polygons. To take advantage of
accelerated quad strips, the connectivity should be set up so that the first and last
vertex for one quad are the same as the second and third of the previous quad. See the
figure below.

For example, to use a quad strip optimization for the polygons shown above, the
connectivity for the vertices should be as follows:

verts = [v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10 ,v11]
oPoly = OBJ_NEW(IDLgrPolygon, verts, $

POLYGON=[4, 0, 1, 5, 4, $
4, 1, 2 ,6, 5, $
4, 2, 3, 7, 6, $

Figure 23-3: Quad Strip Mesh

0 1 2 3

4 5 6 7

8 9 10 11
Polygon Objects Using IDL

Chapter 23: Working with Plots and Graphs 613
4, 4, 5, 9, 8, $
4, 5, 6, 10, 9, $
4, 6, 7, 11, 10])

Triangle Fans

A triangle fan is a set of connected triangles that all share a common vertex. To take
advantage of accelerated triangle fans, the connectivity should be set up so that the
first vertex in every triangle is the common vertex, and the second vertex is the same
as the last vertex of the previous triangle, as shown below.

For example, to use a triangle fan optimization for the polygons shown in the left side
of the figure, the connectivity for the vertices should be as follows:

verts = [v0, v1, v2, v3, v4, v5]
oPoly = OBJ_NEW(IDLgrPolygon, verts, $

POLYGON=[3, 0, 1, 2, $
3, 0, 2, 3, $
3, 0, 3, 4, $
3, 0, 4, 5])

Triangle Strips

A triangle strip is a set of connected triangles, each of which share two vertices with
the previous triangle. To take advantage of accelerated triangle strips, the
connectivity should be set up so that the first two vertices in every triangle must have
been in the previous triangle and ordered in the same direction (counter-clockwise or
clockwise) and the final vertex must be new, as shown in the right side of the
previous figure.

Figure 23-4: Triangle Fan Mesh (left) and Triangle Strip Mesh (right)

2 3 4

1 0 5

0 2 4

1 3 5
Using IDL Polygon Objects

614 Chapter 23: Working with Plots and Graphs
For example, to use the triangle strip optimization for the polygons shown in the
right-hand figure, the connectivity for the vertices should be as follows:

verts = [v0, v1, v2, v3, v4, v5]
oPoly = OBJ_NEW(IDLgrPolygon, verts, $

POLYGON=[3, 0, 1, 2, $
3, 2, 1, 3, $
3, 2, 3, 4, $
3, 4, 3, 5])

No limits are imposed on the number of meshes or types of meshes within any given
polygon object. A single POLYGON keyword value might contain any combination
of quad strips, triangle strips, triangle fans, or non-specialized polygons.

As the length of the strips or fans grows, and as the percentage of vertex connections
that are optimized by the rules described above increases, the performance upgrade
becomes more perceptible. The optimizations are a result of minimizing the time
required to perform vertex transforms. If the drawing of the polygons are otherwise
limited by fill-rate (as might occur on some systems if texture-mapping is being
applied, for instance), these optimizations may not be of significant benefit. In any
case, performance will not be hindered in any way by utilizing these specialized
meshes, so it is suggested that they be applied whenever possible.

Note
The IDLgrSurface object always takes advantage of the quad mesh optimization
automatically without programmer intervention.

Normal Computations

For IDLgrPolygon objects, normal vectors are computed by default at each vertex by
averaging the normals of the polygons that share that vertex. These normals are then
used to compute illumination intensities across the surface of the polygon.
Computing default normals is a computationally expensive operation. Each time the
polygon is drawn, this computation will be repeated if the polygon has changed
significantly enough to warrant a new internal cache (for example, if the
connectivity, vertices, shading, or style have changed). In some cases, the normals do
not actually change as other modifications are made. In these cases, the expense of
default normal computation can be bypassed if the user provides the normals
explicitly (via the NORMALS keyword). The provided normals will be reused every
time the polygon is drawn (without further computation) until they are replaced
explicitly by the user. See COMPUTE_MESH_NORMALS in the IDL Reference
Guide for more information.
Polygon Objects Using IDL

Chapter 23: Working with Plots and Graphs 615
Polyline Objects

Polyline objects lines connect a series of points in two- or three-dimensional space.

Creating Polyline Objects

To create a polyline object, provide a 2-by-n or 3-by-n array (or two or three vectors)
containing the locations of the polyline’s constituent points to the IDLgrPolyline::Init
method. For example, the following statement creates a line from the origin, to the
point X = 1, Y = 2, then to the point X = 4, Y = 3:

mypolyline = OBJ_NEW('IDLgrPolyline', [[0,0], [1,2], [4,3]])

See “IDLgrPolyline” in Appendix A in the IDL Reference Guide for details on
creating polyline objects.

Using Polyline Objects

Polyline objects have numerous properties controlling how they are rendered. You
can set these properties when creating the polyline object, or use the SetProperty
method to the polyline object to change these properties after creation.

Symbols

You can specify a symbol to render at each point in the polyline’s path by setting the
SYMBOL property to the object reference of an IDLgrSymbol object (or to an array
of IDLgrSymbol objects). See “Symbol Objects” on page 577 for details.

Shading and Vertex Coloring

Polyline object can be shaded or their vertex points colored in the same manner as
polygon objects. See “Shading” and “Vertex Colors” in “Using Polygon Objects” on
page 610 for details.
Using IDL Polyline Objects

616 Chapter 23: Working with Plots and Graphs
Plot Objects

Plot objects maps a set of abscissa values to a set of ordinate values and creates a
polyline connecting the points. Note that plot objects do not automatically create axes
for the plot lines they create.

Creating Plot Objects

Create a plot line by providing a vector of Y values, and, optionally, a vector of X
values. If no X values are provided, the Y values are plotted against the element
indices of the Y vector.

The following statement creates a plot object plotting the values [2, 9, 4, 4, 6, 2, 8]
against their own indices:

myplot = OBJ_NEW('IDLgrPlot', [2,9,4,4,6,2,8])

The following statements plot the same data versus a series of primes:

datay = [2,9,4,4,6,2,8]
datax = [0,1,2,5,7,11,13]
myplot = OBJ_NEW('IDLgrPlot', datax, datay)

See “IDLgrPlot” in Appendix A in the IDL Reference Guide for details on creating
plot objects.

Using Plot Objects

Plot objects can be configured to draw regular X vs. Y, histogram, or polar plots. Set
the HISTOGRAM property to create a histogram plot, or the POLAR property to
create a polar plot. The following example uses the same data set to create a standard
plot, a histogram plot, and a standard plot using a boxcar filter. All three plots are
displayed in the same view.

mywindow = OBJ_NEW('IDLgrWindow')
myview = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[-10,-10,20,20])
mymodel = OBJ_NEW('IDLgrModel')

x = (FINDGEN(21) / 10.0 - 1.0) * 10.0
y = [3.0, -2.0, 0.5, 4.5, 3.0, 9.5, 9.0, 4.0, 1.0, -8.0, $

-6.5, -7.0, -2.0, 5.0, -1.0, -2.0, -6.0, 3.0, 5.5, 2.5, -3.0]
myplot1 = OBJ_NEW('IDLgrPlot', x, y, COLOR=[120, 120, 120])
myplot2 = OBJ_NEW('IDLgrPlot', x, y, /HISTOGRAM, LINESTYLE=4)
y2 = SMOOTH(y, 5)
myplot3 = OBJ_NEW('IDLgrPlot', x, y2, LINESTYLE=2)
Plot Objects Using IDL

Chapter 23: Working with Plots and Graphs 617
myview -> Add, mymodel
mymodel -> Add, myplot1
mymodel -> Add, myplot2
mymodel -> Add, myplot3

mywindow -> Draw, myview

Minimum and Maximum Values

You can control the minimum and maximum values of data plotted by a plot object.
Set the MAX_VALUE property of the plot object to disregard data values higher
than a specified value. Set the MIN_VALUE property to disregard data values lower
than a specified value. Floating-point Not-a-Number (NaN) values are also treated as
missing data and are not plotted.

For example, the following statement changes the minimum and maximum values of
the histogram plot, and re-draws the view object:

myplot2 -> SetProperty, MAX_VALUE=8, MIN_VALUE=2
mywindow -> Draw, myview

Figure 23-5: Plot Object
Using IDL Plot Objects

618 Chapter 23: Working with Plots and Graphs
Using Plotting Symbols

Set the SYMBOL property of a plot object equal to the object reference of a symbol
object to display that symbol at each data point. For example, to use a triangle symbol
at each data point, create the following symbol object, set the plot object’s SYMBOL
property, and re-draw:

mySymbol = OBJ_NEW('IDLgrSymbol', 5, SIZE=[.3,.3])
myplot1 -> SetProperty, SYMBOL=mySymbol
mywindow -> Draw, myview

Averaging Points

Use the NSUM property of the plot object to average the values of a group of data
points before plotting. If there are m data points, m/NSUM data points are plotted.
For example, the following statement causes IDL to average pairs of data points
when plotting the line for the histogram plot:

myplot2 -> SetProperty, NSUM=2
mywindow -> Draw, myview

Figure 23-6: Plotting Symbols
Plot Objects Using IDL

Chapter 23: Working with Plots and Graphs 619
Polar Plots

To create a polar plot, provide a vector of radius values, a vector of theta values, and
set the POLAR property to a nonzero value. The following example creates a simple
polar plot:

mywindow = OBJ_NEW('IDLgrWindow')
myview = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[-100,-100,200,200])
mymodel = OBJ_NEW('IDLgrModel')
r = FINDGEN(100)
theta = r/5
mypolarplot = OBJ_NEW('IDLgrPlot', r, theta, /POLAR)
myview -> Add, mymodel
mymodel -> Add, mypolarplot
mywindow -> Draw, myview

Figure 23-7: Polar Plot
Using IDL Plot Objects

620 Chapter 23: Working with Plots and Graphs
Legend Objects

Legend objects provide a simple interface for displaying legends. The legend itself
consists of a (filled and/or framed) box around one or more legend items (arranged in
a single column) and an optional title string. Each legend item consists of a glyph
patch positioned to the left of a text string. The glyph patch is drawn in a square
which is a fraction of the legend label font height.

Creating Legend Objects

To create a legend object, you must provide an array of item names, along with arrays
of symbols, line styles, or objects, along with arrays of attributes (such as color or
thickness) for the items. The following simple example creates a legend object with
two items. The first item (Cows) is represented by the predefined symbol number
four (a diamond), and the second item (Weasels) is represented by a line-filled box.

itemNameArr = [’Cows’, ’Weasels’]
mytitle = OBJ_NEW(’IDLgrText’, ’My Legend’)
mysymbol = OBJ_NEW(’IDLgrSymbol’, 4)
mypattern = OBJ_NEW(’IDLgrPattern’, 1)
myLegend = OBJ_NEW(’IDLgrLegend’, itemNameArr, TITLE=mytitle, $

ITEM_TYPE=[0,1], ITEM_OBJECT=[mysymbol, mypattern], $
/SHOW_OUTLINE)

See “IDLgrLegend” in Appendix A in the IDL Reference Guide for details on
creating legend objects. See the next section for a more detailed explanation of the
elements of the legend.

Using Legend Objects

The legend object allows you to define the annotations that correspond to the array of
strings used as legend names in a variety of ways. The length of the argument string
array is used to determine the number of items to be displayed. Each item is defined
by taking one element from the ITEM_NAME, ITEM_TYPE, ITEM_LINESTYLE,
ITEM_THICK, ITEM_COLOR, and ITEM_OBJECT vectors, if they are defined. If
the number of items (as defined by the argument array or the ITEM_NAME array)
exceeds any of the attribute vectors, the attribute defaults will be used for any
additional items.

Specify a list of item names either via the argument to IDLgrLegend::Init, or via the
ITEM_NAME property. The length of this array determines the size of the legend.

Use the ITEM_TYPE property to define whether an element in the legend is
represented by a line (with an optional plotting symbol) or by a filled or unfilled box.
Legend Objects Using IDL

Chapter 23: Working with Plots and Graphs 621
There should be one element of the ITEM_TYPE array per element in the input array
or ITEM_NAME array.

Use the ITEM_LINESTYLE and ITEM_THICK properties to define the style and
thickness of lines used as legend items. These arrays are ignored for elements that are
not lines. Use the ITEM_COLOR property to specify the color of each legend
element independently.

Use the ITEM_OBJECT property to specify that a graphic object be used as an
annotation.

Dimensions

Until the legend is drawn to the destination object, the [XYZ]RANGE properties will
be zero. Because you must know the size of the legend object in order to scale it
properly for your window, you must use the ComputeDimensions method on the
legend object to get the data dimensions of the legend prior to a draw operation.

The following example builds and displays a three-element legend.

; Create a window, view, and model:
mywindow = OBJ_NEW('IDLgrWindow')
myview = OBJ_NEW('IDLgrView')
mymodel = OBJ_NEW('IDLgrModel')
myview -> Add, mymodel
; Create the legend with two items:
itemNameArr = ['Original Data', 'Histogram Plot', $

'Boxcar-filtered (Width=5)']
mytitle = OBJ_NEW('IDLgrText', 'Plot Legend')
mysymbol = OBJ_NEW('IDLgrSymbol', 5, SIZE=[0.3, 0.3])
myLegend = OBJ_NEW('IDLgrLegend', itemNameArr, TITLE=mytitle, $

BORDER_GAP=0.8, GAP=0.5, $
ITEM_TYPE=[0,1], ITEM_LINESTYLE=[0,4,2], $
ITEM_OBJECT=[mysymbol, OBJ_NEW(), OBJ_NEW()]$
GLYPH_WIDTH=2.0, /SHOW_OUTLINE)

; Add the legend to the model:
mymodel -> Add, mylegend
; Center the legend in the window.
; Note that you must use the ComputeDimensions method
; to get the dimensions of the legend.
dims = mylegend->ComputeDimensions(mywindow)
mymodel->Translate, -(dims[0]/2.), -(dims[1]/2.), 0
; Draw the legend:
mywindow->Draw, myview
Using IDL Legend Objects

622 Chapter 23: Working with Plots and Graphs
Figure 23-8: Legend Object
Legend Objects Using IDL

Chapter 23: Working with Plots and Graphs 623
A Plotting Routine

This section develops a plotting routine that uses many of the object graphics features
discussed here and in previous chapters. The code for this example is contained in the
file obj_plot.pro, located in the examples/visual subdirectory of the IDL
distribution.

The OBJ_PLOT routine will create a window object, and display within it a view of a
single model object, which will contain a plot object, x- and y-axis objects, and an x-
axis title object. It will use the Times Roman font for the axis title.

In creating the procedure, we allow the user to specify the data to be plotted, and we
define keyword variables which can return the object references for the view, model,
window, axis, and plot objects. This allows the user to manipulate the object tree after
it has been created. We also specify the _EXTRA keyword, which allows the user to
include other keyword parameters in the call. OBJ_PLOT itself passes any extra
keyword parameters only to the plot object, but a more complex program could pass
keyword parameters to any of the objects created. The following lines begin the
procedure.

Note
See “A Function for Coordinate Conversion” on page 550 for a discussion of the
NORM_COORD function used in this example. Also, SET_VIEW is discussed in
“Finding an Appropriate View Volume” on page 544. (The files set_view.pro
and norm_coord.pro are included in the examples/visual/utility
subdirectory of the IDL distribution. NORM_COORD is also defined in the
obj_plot.pro file.)

PRO obj_plot, data, VIEW=myview, MODEL=mymodel, WINDOW=mywindow, $
CONTAINER=mycontainer, XAXIS=myxaxis, YAXIS=myyaxis, $
PLOT=myplot, _EXTRA=e

; Next, create the window, view, and model objects:
mycontainer = OBJ_NEW('IDL_Container')
mywindow = OBJ_NEW('IDLgrWindow')
myview = OBJ_NEW('IDLgrView')
mymodel = OBJ_NEW('IDLgrModel')

; And a font object, specifying Times Roman for
; the font and the default size of 12 points:
myfont = OBJ_NEW('IDLgrFont', 'times')
Using IDL A Plotting Routine

624 Chapter 23: Working with Plots and Graphs
; Next, create a plot object using data specified
; at the command line:
myplot = OBJ_NEW('IDLgrPlot', data, COLOR=[200,100,200])

; Now pass any extra keywords to OBJ_PLOT to the SetProperty
; method of the plot object. Keywords that do not apply to the
; SetProperty method are ignored.
myplot ->SetProperty, _EXTRA=e

; Retrieve the data ranges from the plot object,
; and convert to normalized coordinates using the
; NORM_COORD function.
myplot -> GetProperty, XRANGE=xr, YRANGE=yr
myplot -> SetProperty, XCOORD_CONV=norm_coord(xr), $

YCOORD_CONV=norm_coord(yr)

; Using the range from the plot object, create X- and
; Y-axis objects with appropriate ranges, and convert
; to normalized coordinates. Set the tick lengths to 5% of
; the data range (which is now normalized to 0.0-1.0).
myxaxis = OBJ_NEW('IDLgrAxis', 0, RANGE=[xr[0], xr[1]])
myxaxis -> SetProperty, XCOORD_CONV=norm_coord(xr)
myyaxis = OBJ_NEW('IDLgrAxis', 1, RANGE=[yr[0], yr[1]])
myyaxis -> SetProperty, YCOORD_CONV=norm_coord(yr)
myxaxis -> SetProperty, TICKLEN=0.05
myyaxis -> SetProperty, TICKLEN=0.05

; Add the model object to the view object,
; and the plot and axis objects to the model object.
myview -> Add, mymodel
mymodel -> Add, myplot
mymodel -> Add, myxaxis
mymodel -> Add, myyaxis

; Use the SET_VIEW routine to set an appropriate viewplane
; rectangle and zclip region for the view.
SET_VIEW, myview, mywindow

; Add a title to the X-axis, using the font object defined above:
xtext = OBJ_NEW('IDLgrText', 'X Title', FONT=myfont)
myxaxis -> SetProperty, TITLE=xtext

; Add all objects to the container object.
; Destroying the container destroys all of its contents:
mycontainer -> Add, mywindow
mycontainer -> Add, myview
mycontainer -> Add, myfont
mycontainer -> Add, xtext
A Plotting Routine Using IDL

Chapter 23: Working with Plots and Graphs 625
; Finally, draw the object tree:
mywindow -> Draw, myview
END

Now, the OBJ_PLOT routine can be called with only the data parameter, if you
choose. For example, the statement

OBJ_PLOT, FINDGEN(10)

creates and displays the object hierarchy with a simple plot line. However, if you do
not retrieve the window, view, and other object references via the keywords, there is
no way you can interactively modify the plot. A better way to call OBJ_PLOT would
be:

OBJ_PLOT, FINDGEN(10), WINDOW=win, VIEW=view, PLOT=plot,
CONTAINER=cont

This statement creates the same object hierarchy, but returns the object references for
the window, view, and plot objects in named variables. Having access the object
references allows you to do things like change the color of the plot:

plot -> SetProperty, COLOR=[255,255,255]
window -> Draw, view

enlarge the viewplane rectangle by 10 percent:

view -> GetProperty, VIEWPLANE_RECT=vr
vr2 = [vr[0]-(vr[0]*0.1), vr[1]-(vr[1]*0.1), $

vr[2]+(vr[2]*0.1), vr[2]+(vr[2]*0.1)]
view -> SetProperty, VIEWPLANE_RECT = vr2
window -> Draw, view

or just clean it up:

OBJ_DESTROY, cont

Note that when using the OBJ_DESTROY procedure, any object added to the
specified object (using the Add method) are also destroyed, recursively. We use a
container object to collect all of the objects, including attribute objects and text object
that are not explicitly added to the object tree, which allows you to destroy the entire
collection with a single call to OBJ_DESTROY.

Improvements to the OBJ_PLOT Routine

A number of improvements to the OBJ_PLOT routine are left as exercises for the
programmer:

• Provide error checking on the input arguments.
Using IDL A Plotting Routine

626 Chapter 23: Working with Plots and Graphs
• Provide a way to set properties of the axis and text objects when calling
obj_plot.

• Provide a graphical user interface to using IDL widgets.

• Do the object cleanup (destroying the objects created by obj_plot) when the
user is finished with the routine. (This is easily accomplished if the routine has
a widget interface.)

• Provide a way to retrieve data values once the data has been plotted, using the
mouse to select data points.
A Plotting Routine Using IDL

Chapter 24:

Working with
Surfaces

This chapter describes the use of surface and light objects. The following topics are covered in this
chapter:
Surface Objects . 628
Light Objects . 633

An Interactive Surface Example 636
Using IDL 627

628 Chapter 24: Working with Surfaces
Surface Objects

Surface objects create a representation of functions of two variables. Surfaces are
presented as three-dimensional objects in three-dimensional space, and thus are good
candidates for interactive rotation, and scaling. Examples in this chapter discuss
interactive manipulation of surface objects.

Creating Surface Objects

To create a surface object, provide a two-dimensional array of surface values (Z
values) to the IDLgrSurface::Init method. Optionally, you can supply two vectors or
arrays X and Y that specify the locations in the XY plane of the Z values provided. If
X and Y are not provided, the surface is generated as a function of the array indices of
each element of the Z array.

For example, the following statements create a surface object from the two-
dimensional array created by the IDL command DIST, as a function of the Z data
array indices:

zdata = DIST(40)
mysurf = OBJ_NEW('IDLgrSurface', zdata)

Figure 24-1: Surface Object
Surface Objects Using IDL

Chapter 24: Working with Surfaces 629
Similarly, if xdata and ydata are either 40-element vectors or 40x40 element arrays
specifying the X and Y values which, when evaluated by some function, result in the
zdata array, you would create the surface object with the following statement:

mysurf = OBJ_NEW('IDLgrSurface', zdata, xdata, ydata)

See “IDLgrSurface” in Appendix A in the IDL Reference Guide for details on
creating surface objects.

Using Surface Objects

Surface objects have numerous properties controlling how they are rendered. You can
set these properties when creating the surface object, or use the SetProperty method
to the surface object to change these properties after creation.

Style

Set the STYLE property to an integer value that controls how the surface is rendered.
Set the STYLE property equal to one of the following integer values:

0 = Display a single pixel for each data point.

1 = Display the surface as a wire mesh. (This is the default.)

2 = Display the surface as a solid.

3 = Display the surface using only lines drawn parallel to the x-axis.

4 = Display the surface using only lines drawn parallel to the y-axis.

5 = Display a wire mesh lego-type surface (similar to a histogram plot).

6 = Display a solid lego-type surface (similar to a histogram plot).

For example, the following statement changes the surface object to display the
surface as a wire mesh, with the lines drawn in blue:

mysurf -> SetProperty, STYLE=1, COLOR=[0,0,255]

The following statement draws the surface as a solid lego-type surface in green:

mysurf -> SetProperty, STYLE=6, COLOR=[0,255,0]

Vertex Colors

You can supply a vector of vertex colors via the VERT_COLORS property. The
colors in the vector will be applied to each vertex in turn. If there are more vertices
than colors supplied for the VERT_COLORS property, IDL will cycle through the
colors. For example, the following statements color each vertex and connecting line
one of four colors:
Using IDL Surface Objects

630 Chapter 24: Working with Surfaces
vcolors =[[0,100,200],[200,150,200],[150,200,250],[250,0,100]]
mysurf -> SetProperty, STYLE=1, VERT_COLORS=vcolors

Shading

IDL provides two types of shading for surfaces. In Flat shading, the color of the first
vertex in the surface is used to define the color for the entire surface. The color has a
constant intensity. In Gouraud shading, the colors along each line are interpolated
between vertex colors, and then along scanlines from each of the edge intensities.

Note
By default, only ambient lighting is provided for surfaces. If you do not supply a
light source for your object hierarchy, solid surface objects will appear flat with
either Flat or Gouraud shading. See “Light Objects” on page 633 for details on
creating and using light objects.

Set the SHADING property of the surface object equal to 0 (zero) to use flat shading
(this is the default), or equal to 1 (one) to use Gouraud shading. In the above example
using vertex colors, adding the following statement:

mysurf -> SetProperty, STYLE=2, SHADING=1

creates a surface in which the color values are interpolated between the vertex colors.

Figure 24-2: Surface Object Shading
Surface Objects Using IDL

Chapter 24: Working with Surfaces 631
Skirts

You can draw a skirt around the bottom edge of your surface object by setting the
SHOW_SKIRT property of the surface object to 1. The skirt extends from the edge of
the surface to a Z value specified by the SKIRT property. For example, the following
statements draw the surface in wire mesh mode, with a skirt extending from the
bottom of the surface to the value z = 0.1:

mysurf -> SetProperty, STYLE=1, /SHOW_SKIRT, SKIRT=0.1

Hidden Line Removal

Set the HIDDEN_LINES property to the surface object equal to one to remove lines
that are behind the visible parts of the surface from the rendering. By default, hidden
lines are drawn. The following statement alters the surface to remove the hidden
lines:

mysurf -> SetProperty, /HIDDEN_LINES

Warning
Hidden line removal can be time-consuming.

Figure 24-3: Surface Object Hidden Lines
Using IDL Surface Objects

632 Chapter 24: Working with Surfaces
Texture Mapping

You can map an image onto a surface object by specifying an IDLgrImage object
to the TEXTURE_MAP property. The TEXTURE_COORD property defines how
individual data points within the image data are mapped to the surface’s vertices. If
the TEXTURE_COORD property is not specified, the surface object will map the
texture onto the entire data space (the region between 0.0 and 1.0 in normalized
coordinates).
Surface Objects Using IDL

Chapter 24: Working with Surfaces 633
Light Objects

Objects of the IDLgrLight class represent sources of illumination for graphic objects.
Although light objects are not rendered themselves, they are part of the model tree
and thus can be transformed along with the graphic objects they illuminate.

If no light sources are specified for a given model, a default ambient light source is
supplied. This allows you to display many objects without explicitly creating a light
source. The use of only ambient light becomes problematic, however, when solid
surfaces and other objects constructed from polygons are displayed. With only
ambient lighting, all solid surfaces appear flat—in fact, they appear to be single two-
dimensional polygons rather than objects in three-dimensional space.

Note
Graphic objects do not automatically cast shadows onto other objects.

Creating Light Objects

There are no arguments to the IDLgrLight::Init method. Keywords to the Init method
allow you to control a number of properties of the light object, including the
attenuation, color, cone angle (area of coverage), direction, focus, intensity, location,
and type of light.

The following statement creates a default light object. The default light object is a
white positional light, located at the origin.

mylight = OBJ_NEW('IDLgrLight')

There are four types of light objects available. Set the TYPE property of the light
object to one of the following integer values:

• 0 = Ambient light. An ambient light is a universal light source, which has no
direction or position. An ambient light illuminates every surface in the scene
equally, which means that no edges are made visible by contrast. Ambient
lights control the overall brightness and color of the entire scene. If no value is
specified for the TYPE property, an ambient light is created.

• 1 = Positional light. A positional light supplies divergent light rays, and will
make the edges of surfaces visible by contrast if properly positioned. A
positional light source can be located anywhere in the scene.

• 2 = Directional light. A directional light supplies parallel light rays. The effect
is that of a positional light source located at an infinite distance from scene.
Using IDL Light Objects

634 Chapter 24: Working with Surfaces
• 3 = Spot light. A spot light illuminates only a specific area defined by the
light’s position, direction, and the cone angle, or angle which the spotlight
covers.

See “IDLgrLight” in Appendix A in the IDL Reference Guide for details on creating
light objects.

Using Light Objects

In addition to the type of light source, you can control several other properties of a
light object. The following example creates a solid surface object and displays it first
with only ambient lighting, then adds various light objects to the scene.

Note
The SET_VIEW function is discussed in “Finding an Appropriate View Volume”
on page 544.

Begin by creating some data, the surface object, and supporting objects:

zdata = DIST(40)

mywindow = OBJ_NEW('IDLgrWindow')
myview = OBJ_NEW('IDLgrView')
mymodel = OBJ_NEW('IDLgrMODEL')
mysurf = OBJ_NEW('IDLgrSurface', zdata, STYLE=2)

;Create the object hierarchy:
myview -> Add, mymodel
mymodel -> Add, mysurf

;Retrieve the X, Y, and Z ranges from the surface object:
mysurf -> GetProperty, XRANGE=xr, YRANGE=yr, ZRANGE=zr

;Convert x, y, and z ranges to normalized coordinates.
xnorm = [-xr[0]/(xr[1]-xr[0]), 1/(xr[1]-xr[0])]
ynorm = [-yr[0]/(yr[1]-yr[0]), 1/(yr[1]-yr[0])]
znorm = [-zr[0]/(zr[1]-zr[0]), 1/(zr[1]-zr[0])]

mysurf -> SETPROPERTY, XCOORD_CONV=xnorm, $
YCOORD_CONV=ynorm, ZCOORD_CONV=znorm

;Rotate the surface to a convenient orientation:
mymodel ->Rotate, [1,0,0], -90
mymodel ->Rotate, [0,1,0], 30
mymodel ->Rotate, [1,0,0], 30
Light Objects Using IDL

Chapter 24: Working with Surfaces 635
;Use the SET_VIEW routine to set an appropriate viewplane
;rectangle and zclip region for the view:
SET_VIEW, myview, mywindow

;Draw the contents of the view:
mywindow -> Draw, myview

Once the surface object is drawn, we see that there is no definition or apparent three-
dimensional shape to the surface. If we add a positional light one unit in the Z
direction above the XY origin, however, details appear:

mylight = OBJ_NEW('IDLgrLight', TYPE=1, LOCATION=[0,0,1])
mymodel -> Add, mylight
mywindow -> Draw, myview

We can continue to alter the lighting characteristics by changing the properties of the
existing light or by adding more light objects. (You can have up to eight lights in a
given view object.) We can change the color:

mylight -> SetProperty, COLOR=[200,0,200]
mywindow -> Draw, myview

We can change the intensity of the light:

mylight -> SetProperty, INTENSITY=0.7
mywindow -> Draw, myview
Using IDL Light Objects

636 Chapter 24: Working with Surfaces
An Interactive Surface Example

With a little programming, we can create an application that allows the user to display
a surface object and transform its model tree interactively using the mouse. The file
surf_track.pro, located in the examples/visual subdirectory of the IDL
distribution, uses IDL widgets to create a graphical user interface to an object tree.
The SURF_TRACK procedure creates a surface object from user-specified data (or
from default data, if none is specified), and places the surface object in an IDL draw
widget. The SURF_TRACK interface allows the user to specify several attributes of
the object hierarchy via pull-down menus. Finally, the SURF_TRACK procedure
uses the example trackball object (see “Virtual Trackball and 3D Transformations”
on page 555 for details) to allow the user to rotate the surface in three dimensions.

Call the SURF_TRACK procedure without an argument to use the default surface (a
Bessel function) or with a two-dimensional array as its argument:

;Make up some data:
zdata = DIST(40)
SURF_TRACK, zdata

We encourage you to inspect the code in surf_track.pro for hints on how to
create a widget application around a draw widget that uses Object Graphics. Note
especially that the SURF_TRACK procedure is well-behaved when it exits,
destroying all of the objects it creates so as not to tie up memory with leftover objects
for which object references are no longer available.

Figure 24-4: STYLE=3 (Ruled xz), HIDDEN_LINES=1 (hidden lines removed)
An Interactive Surface Example Using IDL

Chapter 24: Working with Surfaces 637
Figure 24-5: SHADING=1 (Gouraud), STYLE=2 (Solid)

Figure 24-6: SKIRT=-0.402645
Using IDL An Interactive Surface Example

638 Chapter 24: Working with Surfaces
An Interactive Surface Example Using IDL

Chapter 25:

Working with
Images

The following topics are covered in this chapter:
Image Objects . 640
Colorbar Objects . 644

Saving an Image to a File 646
Using IDL 639

640 Chapter 25: Working with Images
Image Objects

An object of the IDLgrImage class (see IDLgrImage in the IDL Reference Guide)
represents a two-dimensional array of pixel values, rendered on the plane z = 0.
Image objects can have a single channel (one value per pixel—greyscale or color
indexed), two channels (greyscale and Alpha), three channels (Red, Green, and
Blue), or four channels (Red, Green, Blue, and Alpha). The Alpha channel, if present,
determines the transparency of the pixel.

Image objects that have more than one channel can be interleaved either by pixel, by
line, or by image. That is, if the image has three channels, width m and height n, the
image array can be organized 3-by-m-by-n (pixel interleaving), m-by-3-by-n (line, or
scanline interleaving), or m-by-n-by-3 (image, or planar interleaving).

Creating Image Objects

To create an image object, supply an array of pixel values to the IDLgrImage::Init
method. If the image has more than one channel, be sure to set the INTERLEAVE
property of the image object to the appropriate value. If image is an array of image
data that is pixel interleaved, you would use the following statement to create an
image object:

myimage = OBJ_NEW('IDLgrImage', image, INTERLEAVE=0)

For example, the following statements read a JPEG file located in the IDL
distribution and create an image object from the RGB image. First, locate the
rose.jpg file and read the image data into the variable image:

file = FILEPATH('rose.jpg', SUBDIR=['examples', 'data'])
READ_JPEG, file, image
;Create the objects:
mywindow = OBJ_NEW('IDLgrWindow', DIMENSIONS=[227,149])
myview = OBJ_NEW('IDLgrView', VIEW=[0,0,227,149])
mymodel = OBJ_NEW('IDLgrModel')
myimage = OBJ_NEW('IDLgrImage', image, INTERLEAVE=0)
;Organize the object hierarchy:
myview -> Add, mymodel
mymodel -> Add, myimage
;Draw to the window:
mywindow -> Draw, myview
Image Objects Using IDL

Chapter 25: Working with Images 641
See IDLgrImage in the IDL Reference Guide for details on creating image objects.

Note
IDLgrImage does not treat NaN data as missing. If the image data includes NaNs, it
is recommended that the BYTSCL function (in the IDL Reference Guide) be used
to appropriately handle those values. For example:
oImage->SetProperty, DATA = BYTSCL(myData, /NaN, MIN=0, MAX=255)

Using Image Objects

Several properties allow you to control the way image objects are rendered.

Alpha Blending

If your image data includes an alpha channel, use the BLEND_FUNCTION property
of the image object to control how the alpha channel values will be interpreted. Set
the BLEND_FUNCTION property equal to a two-element vector [src, dst] specifying

Figure 25-1: Image Object
Using IDL Image Objects

642 Chapter 25: Working with Images
one of the functions listed below for each of the source and destination objects. The
values of the blending function (Vsrc and Vdst) are used in the following equation

where Cd is the initial color of a pixel on the destination device (the background
color), Ci is the color of the pixel in the image, and Cd' is the resulting color of the
pixel.

Setting src and dst in the BLEND_FUNCTION vector to the following values
determine how each term in the equation is calculated:

For example, setting BLEND_FUNCTION = [3, 4] creates an image in which you
can see through the foreground image to the background to the extent defined by the
alpha channel values of the foreground image.

src or dst Vsrc or Vdst What the function does

0 n/a Alpha blending is disabled. Cd' = Ci.

1 0 The value of Vsrc or Vdst in the equation is zero,
thus the value of the term is zero.

2 1 The value of Vsrc or Vdst in the equation is one,
thus the value of the term is the same as the
color value.

3 Imageα The value of Vsrc or Vdst in the equation is the
value of the alpha channel of the image.

4 1– Imageα The value of Vsrc or Vdst in the equation is one
minus the value of the alpha channel of the
image.

Table 25-1: BLEND_FUNCTION Vector Behavior

Cd' Vsrc Ci⋅() Vdst Cd⋅()+=
Image Objects Using IDL

Chapter 25: Working with Images 643
Interleaving

Set the INTERLEAVE property of the image object to 0 (zero) to indicate that the
image is interleaved by pixel, to 1 (one) to indicated that the image is interleaved by
line, or to 2 to indicate that the image is interleaved by image, or plane. For example,
the following statement changes the image object to use line interleaving:

myimage -> SetProperty, INTERLEAVE=1

Palettes

If your image array contains indexed color data (that is, if it is an m-by-n array), you
can specify a palette object to control the conversion between the image data and the
palette used by an RGB-mode destination object. (See “Using Color” on page 564 for
a discussion of the interaction between indexed color objects and RGB color
destinations.) Set the PALETTE property of the image object equal to an instance of
an IDLgrPalette object:

myimage -> SetProperty, PALETTE = mypalette

To specify that an image be drawn in greyscale mode rather than through an existing
color palette, set the GREYSCALE property equal to 1 (one). The GREYSCALE
property is only used if the image data is a single channel (an m-by-n array).

Note
A 2-by-m-by-n array is considered to be a greyscale image with an Alpha channel.
An image containing indexed color data cannot have an alpha channel.
Using IDL Image Objects

644 Chapter 25: Working with Images
Colorbar Objects

The IDLgrColorbar object consists of a color-ramp with an optional framing box and
annotation axis. The object can be horizontal or vertical.

Creating Colorbar Objects

To create a colorbar object, you must provide a set of red, green, and blue values to be
displayed in the bar. Axis values are determined from the number of elements in the
color arrays unless otherwise specified via the TICKVALUES property. The
following creates a colorbar one tenth of the window dimension wide by four-tenths
of the window dimension high, with a red-green-blue color ramp:

mytitle = OBJ_NEW('IDLgrText', 'My Colorbar')
barDims = [0.1, 0.4]
redValues = BINDGEN(256)
greenValues = redValues
blueValues = REVERSE(redValues)
mycolorbar = OBJ_NEW(’IDLgrColorbar’, redValues, $

greenValues, blueValues, TITLE=mytitle, $
DIMENSIONS=barDims, /SHOW_AXIS, /SHOW_OUTLINE)

See IDLgrColorbar in the IDL Reference Guide for details on creating colorbar
objects. See the next section for a more detailed explanation of the elements of the
legend.

Using Colorbar Objects

The colorbar object allows you to define the size, colors, and various annotations.

Dimensions

Until the legend is drawn to the destination object, the [XYZ]RANGE properties will
be zero. Because you must know the size of the legend object in order to scale it
properly for your window, you must use the ComputeDimensions method on the
legend object to get the data dimensions of the legend prior to a draw operation.

The following example builds and displays the colorbar described above:

; Create a window, view, and model:
mywindow = OBJ_NEW('IDLgrWindow')
myview = OBJ_NEW('IDLgrView')
mymodel = OBJ_NEW('IDLgrModel')
myview->Add, mymodel
; Create the colorbar. Make the bar one tenth of
; the window size horizontally and four tenths of
Colorbar Objects Using IDL

Chapter 25: Working with Images 645
; the window size vertically. Show the axis values (using the
; default axis annotations) and draw an outline around the bar.
mytitle = OBJ_NEW('IDLgrText', 'My Colorbar')
barDims = [0.1, 0.4]
redValues = BINDGEN(256)
greenValues = redValues
blueValues = REVERSE(redValues)
mycolorbar = OBJ_NEW('IDLgrColorbar', redValues, $

greenValues, blueValues, TITLE=mytitle, $
DIMENSIONS=barDims, /SHOW_AXIS, /SHOW_OUTLINE)

mymodel -> Add, mycolorbar
; Center the colorbar in the window.
; Note that you must use the ComputeDimensions method to
; get the dimensions of the colorbar.
barPlusTextDims = mycolorbar -> ComputeDimensions(mywindow)
mymodel -> Translate, -barDims[0]+(barPlusTextDims[0]/2.), $

-barDims[1]+(barPlusTextDims[1]/2.), 0
; Draw the colorbar:
mywindow -> Draw, myview

Figure 25-2: Colorbar Object
Using IDL Colorbar Objects

646 Chapter 25: Working with Images
Saving an Image to a File

If you have created a scene or view containing graphical objects and wish to save the
rendering to a file, you will first need to create an image object from which to retrieve
the image data. The following steps render an object to a window, create an image
object from the window, and save the image data as a TIFF file.

First, create the view to be rendered. Use an indexed color model for the window
object, setting the background color to white and the foreground color of the plot
object to black.

mywindow = OBJ_NEW('IDLgrWindow', COLOR_MODEL=1)
myview = OBJ_NEW('IDLgrView', $

VIEWPLANE_RECT=[0,-4,10,8], COLOR=255)
mymodel = OBJ_NEW('IDLgrModel')
myplot = OBJ_NEW('IDLgrPlot', RANDOMN(seed, 10), COLOR=0, $

THICK=3)
; Organize the object hierarchy:
myview -> Add, mymodel
mymodel -> Add, myplot
; Draw to the window:
mywindow -> Draw, myview
; Next, use the window object’s Read method to create
; an image object with the rendered scene as its image data:
myimage = mywindow -> Read()
; Retrieve the image data using the GetProperty method
; of the image object:
myimage -> GetProperty, DATA=image
; Display the image data using Direct Graphics:
TV, image
; Write the image to a TIFF file named myfile.tif:
WRITE_TIFF, 'myfile.tif', image

Create an MPEG File

If you have a series of image objects (or simple image arrays), you can combine them
into a single MPEG file using the IDLgrMPEG helper object. Suppose you have an
array imagearray containing IDLgrImage objects that represent a time-series. You
could use the following commands to create an MPEG file from the images.

First, create an MPEG object, and populate the file with frames from the imagearray
array:

myMPEG = OBJ_NEW('IDLgrMPEG', FILENAME='mympeg.mpg')
FOR image = 0, N_ELEMENTS(imagearray) DO BEGIN

myMPEG -> Put, imagearray[image], image
Saving an Image to a File Using IDL

Chapter 25: Working with Images 647
ENDFOR
; Save the MPEG file:
myMPEG -> Save

Note
Note that imagearray can contain either IDLgrImage objects or simple two-
dimensional image arrays. All of the arrays or image objects must have the same
dimensions.

See IDLgrMPEG in the IDL Reference Guide for details on creating MPEG objects.
Using IDL Saving an Image to a File

648 Chapter 25: Working with Images
Saving an Image to a File Using IDL

Chapter 26:

Working with
Volumes

This chapter describes the process of creating and displaying volume objects. The following topics
are covered in this chapter:
Volume Objects . 650 Volume Object Attributes 652
Using IDL 649

650 Chapter 26: Working with Volumes
Volume Objects

A volume object contains a three dimensional data array of voxel values and a set of
rendering attributes. The voxel array is mapped to colors and opacity values through
a set of lookup tables in the volume object. Several rendering methods are provided
to draw the volume to a destination.

Creating Volume Objects

To create a volume object, create a three dimensional array of voxels and pass them
to the IDLgrVolume::Init method. Voxel arrays must be of BYTE type. For example,
the following will create a simple volume data set and create a volume object which
uses it:

data = BYTARR(64,64,64)
FOR i=0,63 DO data[*,i,0:i] = i*2
data[5:15, 5:15, 5:55] = 128
data[45:55, 45:55, 5:15] = 255
myvolume = OBJ_NEW('IDLgrVolume', data)

The volume contains a shaded prism along with two brighter cubes (one located
within the prism).

See IDLgrVolume in the IDL Reference Guide for details on creating volume objects.

Note
You do not need to enter the example code in this chapter yourself. The example
code shown here is duplicated in the procedure file obj_vol.pro, located in the
examples/visual subdirectory of the IDL distribution. You can run the example
procedure by entering OBJ_VOL at the IDL command prompt. The procedure file
stops after each operation (roughly corresponding to each section below) and
requests that you press return before continuing.

Using Volume Objects

A volume object has spatial dimensions equal to the size of the data in the volume. In
the example, the volume object occupies the range 0-63 in the x-, y-, and z-axes. To
make the volume easier to manipulate, we use the XCOORD_CONV,
YCOORD_CONV, and ZCOORD_CONV properties of the volume object to center
the volume at 0,0,0 and scale it to fit in a unit cube:

cc = [-0.5, 1.0/64.0]
myvolume -> SetProperty, XCOORD_CONV=cc, YCOORD_CONV=cc, $
Volume Objects Using IDL

Chapter 26: Working with Volumes 651
ZCOORD_CONV=cc
; Create a window and view tree:
mywindow = OBJ_NEW('IDLgrWindow', DIMENSIONS=[200,200])
myview = OBJ_NEW('IDLgrView',VIEWPLANE_RECT=[-1,-1,2,2], $

ZCLIP=[2.0,-2.0], COLOR=[50,50,50])
mymodel = OBJ_NEW('IDLgrModel')
myview -> Add, mymodel
mymodel -> Add, myvolume
; Rotate the volume a little and draw it:
mymodel -> rotate, [1,1,1], 45
mywindow -> Draw, myview

Figure 26-1: Volume Object
Using IDL Volume Objects

652 Chapter 26: Working with Volumes
Volume Object Attributes

Volume objects have numerous properties controlling how they are rendered. These
properties can be set when the object is created or set using the SetProperty method.

Opacity

The opacity table controls the transparency of a given voxel value. Manipulation of
the opacity table is critical to improving the quality of a rendering. The following
example makes the prism transparent and the cubes opaque, allowing the cube within
the prism to be seen, by setting the OPACITY_TABLE0 array to low values for the
prism and high values for the cubes.

opac = BYTARR(256)
opac[0:127] = BINDGEN(128)/8
;Voxel value of one cube:
opac[255] = 255
;Voxel value of the other cube:
opac[128] = 255
myvolume -> SetProperty, OPACITY_TABLE0=opac
mywindow -> Draw, myview

Figure 26-2: Volume Object Opacity
Volume Object Attributes Using IDL

Chapter 26: Working with Volumes 653
Color

Each voxel value can be assigned an individual color as well. This color mapping can
be changed by changing the RGB_TABLE0 property. To further highlight the cubes,
we change their colors to blue and red, using the following statements:

rgb = bytarr(256,3)
;Grayscale ramp for the prism:
rgb[0:127,0] = bindgen(128)
rgb[0:127,1] = bindgen(128)
rgb[0:127,2] = bindgen(128)
;One cube is red:
rgb[128,*] = [255,0,0]
;One cube is blue:
rgb[255,*] = [0,0,255]
myvolume -> SetProperty, RGB_TABLE0=rgb
mywindow -> Draw, myview

Lighting

Adding lights enhances the edges of volumes. Gradients within the volume are used
to approximate a surface normal for each voxel, and the lights in the current view are
then applied. The gradient shading is enabled by setting the LIGHTING_MODEL
property equal to one. The ambient volume color is selected by setting the
AMBIENT property of the volume object to a color value. Setting the TWO_SIDED
property allows both sides of a voxel to be lighted. An example of this using a light
source follows:

myvolume->SetProperty, AMBIENT=[100,100,100], LIGHTING_MODEL=1, $
TWO_SIDED=1

lmodel = OBJ_NEW('IDLgrModel')
myview -> Add, lmodel
light = OBJ_NEW('IDLgrLight', TYPE=2, LOCATION=[0,0,1], $

COLOR=[255,255,255])
lmodel -> Add, light
mywindow -> Draw, myview
; Disable lighting:
myvolume -> SetProperty, LIGHTING_MODEL=0

Note
Only DIRECTIONAL light sources are honored by the volume object. Because
normals must be computed for all voxels in a lighted view, enabling light sources
increases the rendering time.
Using IDL Volume Object Attributes

654 Chapter 26: Working with Volumes
Compositing

The volume object supports a number of methods for blending the projected voxels
together to form an image. By default, Alpha blending is used. (In Alpha blending,
each voxel occludes voxels behind it according to the opacity of the voxel in front).
Another common compositing technique is the maximum intensity projection (MIP).
Set the volume object to use MIP compositing by setting the
COMPOSITE_FUNCTION property equal to one. See IDLgrVolume::Init in the IDL
Reference Guide for other options.

myvolume -> SetProperty, COMPOSITE_FUNCTION=1
mywindow -> Draw, myview

ZBuffering

When combining a volume with other geometry in the Object Graphics system,
volume objects should in general be drawn last to ensure they intersect the other
(solid) objects properly. To increase rendering speed, the intersection operation is
disabled by default. To enable the intersection calculations, set the ZBUFFER
property of the volume object equal to one.

myvolume -> SetProperty, ZBUFFER=1

Additionally, volume objects allow for control over the rendering of invisible
(opacity equals zero) voxels. By default, the zbuffer will be updated for such voxels
(even though no change is made in the image color). This writing to the zbuffer by
transparent voxels be disabled by setting the ZERO_OPACITY_SKIP property.

myvolume -> SetProperty, ZERO_OPACITY_SKIP=1

Note
In volumes with large numbers of voxels with their opacity set to zero, enabling
ZERO_OPACITY_SKIP can improve rendering performance.

Interpolation

By default, when rendering a volume object, values between the voxels are estimated
using nearest neighbor sampling. When higher quality rendering is desired, trilinear
interpolation can be selected instead by setting the INTERPOLATE property equal to
one.

myvolume -> SetProperty, INTERPOLATE=1
Volume Object Attributes Using IDL

Chapter 26: Working with Volumes 655
Note
Trilinear interpolation will cause the rendering to take considerably longer than
nearest neighbor interpolation.

Rendering speed

Rendering speed can be improved by reducing the quality of the rendering. Use the
RENDER_STEP property to control this speed/quality trade-off. The value of the
RENDER_STEP property specifies a step size in the screen dimensions which is
used to skip voxels during the rendering process. Larger values yield faster rendering
times, but lower final image quality. For example, to render only half as many voxels
in the screen Z dimension, use the following statement:

myvolume -> SetProperty, RENDER_STEP=[1,1,2]

A more complex example using a volume object is shown in the volume visualization
demo. To start the demos, type demo at the IDL command prompt.

Figure 26-3: Volume Object Rendering
Using IDL Volume Object Attributes

656 Chapter 26: Working with Volumes
Volume Object Attributes Using IDL

Chapter 27:

Selecting Objects
This chapter will describe the IDL Object Graphics selection and direct manipulation features. The
following topics are covered in this chapter:
Selection and Data Picking 658
Selection . 659
A Selection Example 661

Data Picking . 662
A Data Picking Example 663
Using IDL 657

658 Chapter 27: Selecting Objects
Selection and Data Picking

When graphical items are drawn to a window, it is often useful to be able to click the
mouse on a certain location and request a list of the items that are displayed at that
particular location. In IDL, this is called selection. Because IDL object graphics are
retained in memory, they can be uniquely identified by their individual object
references, and therefore can be reported as having been selected.

In many cases, it is also useful to be able to request the data value of the object at the
user-selected location. In IDL, this is called data picking.
Selection and Data Picking Using IDL

Chapter 27: Selecting Objects 659
Selection

With object graphics, the process of selection is very similar to drawing, except that
nothing is displayed on the screen, and information about which objects were
selected is returned to the user. Selection is performed via the Select method of an
IDLgrWindow object.

Three types of objects may be selected: view objects, model objects, and graphic
atoms. For a given scene that contains more than one view, you can use the Select
method to determine which view is selected at a given location. Likewise, for a given
view, you can use the Select method to determine which models and/or graphical
atoms within that view are selected.

An object is considered to be selected if its graphical rendering falls within a box
centered on a given location. The dimensions of the box are set via the
DIMENSIONS keyword to the Select method. Both the location argument and
dimensions keyword values are measured in units specified via the UNITS keyword.

The Select method returns a vector of objects, sorted in depth order (nearest to the
eye is first), that meet the criteria of having been selected at the given location. If no
objects are selected at the given location, the Select method returns –1.

See IDLgrWindow::Select in the IDL Reference Guide for a detailed description of
the Select method.

Selecting Views

To determine which of a set of views within a given scene are selected at a given
location, call the Select method on an IDLgrWindow object with an instance of an
IDLgrScene object as its first argument, and the location at which the selection is to
occur as its second argument:

myLoc = [myMouseEvent.x, myMouseEvent.y]
mySelectedViews = myWindow -> Select(myScene, myLoc)

Selecting Graphic Atoms

To determine which graphic items within a given view are selected at a given
location, call the Select method on an IDLgrWindow object should be called with an
instance of an IDLgrView object as its first argument, and the location at which the
selection is to occur as the second argument:

myLoc = [myMouseEvent.x, myMouseEvent.y]
mySelectedGraphics = myWindow -> Select(myView, myLoc)
Using IDL Selection

660 Chapter 27: Selecting Objects
Note
If a model within the view is set as a selection target, the model object, rather than
its contained graphic atoms, is returned in the vector of selected objects.

 Selecting Models

In some cases, a group of graphic atoms may be considered subcomponents of the
model in which they are contained. As a result, you may want to know when a model
object (rather than one or more of its atomic parts) has been selected. To enable
selection of a model (rather than its graphic atoms), the model object must be marked
as a selection target.

To mark a model as being a selection target, set the SELECT_TARGET property of
the model object to a nonzero value.

myWindow = OBJ_NEW('IDLgrWindow')
myView = OBJ_NEW('IDLgrView')
myModel = OBJ_NEW('IDLgrModel')
myView -> Add, myModel
myModel -> SetProperty, /SELECT_TARGET
myAxis = OBJ_NEW('IDLgrAxis', 0)
myModel -> Add, myAxis
myWindow -> Draw, myView

In the above example, if a selection at location [myX, myY] would normally select the
axis object, the returned value of the Select method will be the object reference to
myModel rather than the object reference to myAxis.
Selection Using IDL

Chapter 27: Selecting Objects 661
A Selection Example

An example procedure named sel_obj.pro is included in the examples/visual
subdirectory of the IDL distribution. This file creates two views, places models
within the views, and provides an interface to let you choose between selecting
models or graphic atoms. A mouse click in one of the views will update a label that
identifies the current selections.
Using IDL A Selection Example

662 Chapter 27: Selecting Objects
Data Picking

To get the data value that corresponds to a particular window location, use the
PickData method of an IDLgrWindow object. Note that you must draw the view to
the window before calling the PickData method.

myLoc = [myMouseEvent.x, myMouseEvent.y]
result = myWindow -> PickData(myView, myModel, myLoc, returnedXYZ)

The PickData method returns a value that is 0 (zero) if the pick hit the background of
the view, 1 (one) if the pick hit the one of the graphic atoms in the view, or –1 if an
error occurred (for instance, if the pick location lies outside of the given view).

The data value at the pick is returned in the returnedXYZ argument. This value
represents the mapping of the window location to the data space of the model.
Data Picking Using IDL

Chapter 27: Selecting Objects 663
A Data Picking Example

The example procedure surf_track.pro includes code using the PickData method
to retrieve data values from a surface object. surf_track.pro is located in the
examples/visual subdirectory of the IDL distribution, and is described in “An
Interactive Surface Example” on page 636.
Using IDL A Data Picking Example

664 Chapter 27: Selecting Objects
A Data Picking Example Using IDL

Chapter 28:

Using Destination
Objects

The following topics are covered in this chapter:
Overview . 666
Window Objects . 667
Using Window Objects 670
Instancing . 672

Buffer Objects . 674
Clipboard Objects 675
Printer Objects . 676
VRML Objects . 679
Using IDL 665

666 Chapter 28: Using Destination Objects
Overview

Once a graphic object tree has been created, it can be displayed, or drawn, to a
physical destination device (such as a computer screen or printer), to a memory
location (such as a buffer or the operating system clipboard), or to a particular file
format (such as a VRML file). Destination objects represent the final locations to
which object graphics are drawn, and provide methods that allow you to control the
properties of the physical device, memory buffer, or file format.

Each destination object includes a GetFontnames method, which returns the list of
available fonts that can be used in IDLgrFont objects. This method will only return
the names of the available TrueType fonts. Hershey fonts will not be returned as they
are fixed—see Appendix H, “Fonts” in the IDL Reference Guide for more
information.

There are five destination objects:

1. buffers (IDLgrBuffer objects),

2. clipboards (IDLgrClipboard objects),

3. printers (IDLgrPrinter objects)

4. VRML files (IDLgrVRML objects), and

5. windows (IDLgrWindow objects).

Of the five destination objects, Window objects are the most common and most often
used, and will be addressed first.
Overview Using IDL

Chapter 28: Using Destination Objects 667
Window Objects

Objects of the IDLgrWindow class represent a rectangular area on a computer screen
into which graphics hierarchies can be rendered. Window objects can be either stand-
alone windows on the screen or drawable areas in an IDL draw widget.

Creating Window Objects

There are two ways to create window objects: directly via the window object’s Init
method and indirectly by creating a draw widget that uses a window object as its
drawable area.

Using the Init Method

The IDLgrWindow::Init method takes no arguments. Use the following statement to
create a window object:

myWindow = OBJ_NEW('IDLgrWindow')

The window is displayed on the screen as soon as it has been created.

Creating a Draw Widget that Uses a Window Object

To create a draw widget that uses an Object Graphics window object rather than a
Direct Graphics window for its drawable area, set the GRAPHICS_LEVEL keyword
to the WIDGET_DRAW function equal to 2:

drawwid = WIDGET_DRAW(base, GRAPHICS_LEVEL=2)

Once the draw widget has been realized, you can then retrieve the object reference to
the draw widget’s window object using the WIDGET_CONTROL procedure:

WIDGET_CONTROL, drawwid, GET_VALUE=myWindow

Color Model

By default, window objects use the RGB color model. To create a window that uses
the Indexed color model, set the COLOR_MODEL property of the window object
equal to 1 (one) when creating the window:

myWindow = OBJ_NEW('IDLgrWindow', COLOR_MODEL=1)

You cannot change the color model used by a window after it has been created.

See Chapter 20, “Working with Color” for a discussion of the two color models.
Using IDL Window Objects

668 Chapter 28: Using Destination Objects
Hardware vs. Software Rendering

The RENDERER property to the IDLgrWindow object (and the preference of the
same name in the IDL Development Environment) allows you to select between the
operating system’s native (hardware) rendering system and a platform independent
(software) rendering system for IDL Object Graphics displays.

Hardware rendering allows IDL to make use of 3D graphics accelerators that support
OpenGL, if any are installed in the system. In general, such accelerators will provide
better rendering performance for many object graphics displays. By default, IDL will
use hardware rendering when possible.

The software rendering system will generally run more slowly than the hardware
rendering system. However, use of the software rendering system has a few important
advantages:

• Software rendering is available in situations where hardware rendering is not
(remote display to non-OpenGL capable X servers, for example).

• The number of expose events an IDL application will have to respond to is
much smaller when software rendering is used.

• The software rendering system is generally much faster than the hardware
rendering system for Instancing.

• Software rendering can be used to avoid bugs in hardware rendering system
driver software (over which Research Systems has no control).

• Finally, on some displays (most notably SGI systems with 24 or fewer
bitplanes), the quality of the screen display will be better when using the
software rendering system because its design allows more bitplanes to be used
for graphics display.

Note
IDL may not be able to provide hardware rendering in all situations and on
particular platforms. The Macintosh and many Unix platforms do not support
hardware rendering and will always use the software rendering system. In cases
where hardware rendering is not available, the setting of the RENDERER property
(and the IDL Development Environment preference) will be quietly ignored.

Note on Window Size Limits

The OpenGL libraries IDL uses impose limits on the maximum size of a drawable
area. The limits are device-dependent — they depend both on your graphics hardware
Window Objects Using IDL

Chapter 28: Using Destination Objects 669
and the setting of the RENDERER property. Currently, the smallest maximum
drawable area on any IDL platform is 1280-by-1024 pixels; the limit on your system
may be larger.
Using IDL Window Objects

670 Chapter 28: Using Destination Objects
Using Window Objects

To render a graphics tree to a window, call the IDLgrWindow::Draw method. The
argument must be either an IDLgrView object or an IDLgrScene object.

myWindow -> Draw, myView

or

myWindow -> Draw, myScene

All objects contained within the view or scene object will be drawn to the window.

Erasing a Window

To erase the contents of a window, call the IDLgrWindow::Erase method. You can
optionally supply a color to use to clear the window. By default, the window is erased
to white.

For example, to erase the window to black:

myWindow -> Erase, COLOR=[0,0,0]

Exposing or Hiding a Window

To expose a window so that it is the front-most window on the screen, call the
IDLgrWindow::Show method with a nonzero value as the argument:

myWindow -> Show, 1

To hide a window, call the IDLgrWindow::Show method with a zero value as the
argument:

 myWindow -> Show, 0

Iconifying a Window

To iconify a window, call the IDLgrWindow::Iconify method with a nonzero value as
its argument:

myWindow -> Iconify, 1

To restore an iconified window, call the IDLgrWindow::Iconify method with a zero
value as its argument:

myWindow -> Iconify, 0
Using Window Objects Using IDL

Chapter 28: Using Destination Objects 671
Setting the Window Cursor

To set the appearance of the mouse cursor in an IDLgrWindow object, call the
IDLgrWindow::SetCurrentCursor method with a string argument representing the
name of the cursor. Valid string values for the cursor name argument are:

The following statement sets the cursor to an up arrow:

myWindow -> SetCurrentCursor, 'UP_ARROW'

The ORIGINAL cursor sets the cursor to the window system’s default cursor.

See IDLgrWindow::SetCurrentCursor in the IDL Reference Guide for details on
cursor values.

Saving/Restoring Windows

When an instance of an IDLgrWindow object is restored via the RESTORE
procedure), it is not immediately displayed on the screen. It will be displayed as soon
as one of its methods (Draw, Erase, Iconify, etc.) is called.

ARROW CROSSHAIR

ICON IBEAM

MOVE ORIGINAL

SIZE_NE SIZE_NW

SIZE_SE SIZE_SW

SIZE_NS SIZE_EW

UP_ARROW
Using IDL Using Window Objects

672 Chapter 28: Using Destination Objects
Instancing

For interactive graphics, where views are drawn repeatedly over time, it is often the
case that one small part of the view is changing continuously, but the other objects in
the view remain static. In such a case, it may be more efficient to take a snapshot of
the unchanged portion of the view and display the snapshot for each draw instead of
re-rendering each of the unchanging objects from scratch. The objects that are
changing are rendered as usual. This process is called instancing. It is to your
advantage to use instancing only in cases where displaying the snapshot image is
faster than rendering each of the objects that remain unchanged.

The following example shows how a typical instancing loop would be set up. First,
hide the objects in the view that will be changing. In this example, we assume that the
objects that change continuously are contained by a single model object, with the
object reference myChangingModel. We set the HIDE property for this model to
remove it from the rendered view.

myChangingModel -> SetProperty, HIDE=1

;Next, create an instance of the remaining portion
;of the view by setting the CREATE_INSTANCE keyword to
;the window’s Draw method:
myWindow -> Draw, myScene, /CREATE_INSTANCE

;Next, hide the unchanging objects.
;Assume that the unchanging portion of the
;scene is contained in a single model object.
myUnchangingModel -> SetProperty, HIDE=1

;Set the HIDE property for the changing model
;object equal to zero, revealing the object:
myChangingModel -> SetProperty, HIDE=0

;Set the view object’s TRANSPARENT property.
;This ensures that we will not erase the
;instance data (the unchanging part of the scene)
;when drawing the changing model.
myView -> SetProperty, /TRANSPARENT

;Next, we set up a drawing loop that will render
;the changing model. For example, this loop might
;rotate the changing model in 1 degree increments.
ROT = 0
FOR i=0,359 DO BEGIN

ROT=ROT+1
myChangingModel->Rotate, [0,1,0], ROT
Instancing Using IDL

Chapter 28: Using Destination Objects 673
myWindow -> Draw, myView, /DRAW_INSTANCE
ENDFOR

;After the drawing loop is done, ensure nothing is hidden,
;and that the view erases as it did before:
myUnchangingModel -> SetProperty, HIDE=0
myView -> SetProperty, TRANSPARENT=0
Using IDL Instancing

674 Chapter 28: Using Destination Objects
Buffer Objects

Objects of the IDLgrBuffer class represent a memory buffer into which graphics
hierarchies can be rendered. Object trees can be drawn to instances of the
IDLgrBuffer object and the resulting image can be retrieved from the buffer using the
Read() method. The off-screen representation avoids dithering artifacts by providing
a full-resolution buffer for objects using either the RGB or Color Index color models.

Creating Buffer Objects

The IDLgrBuffer::Init method takes no arguments. Use the following statement to
create a buffer object:

myBuffer = OBJ_NEW('IDLgrBuffer')

This creates an object that is available as a destination device to be rendered into or
copied from.

See IDLgrBuffer in the IDL Reference Guide for details on creating and using buffer
objects.
Buffer Objects Using IDL

Chapter 28: Using Destination Objects 675
Clipboard Objects

Objects of the IDLgrClipboard class will send Object Graphics output to the
operating system native clipboard in bitmap format. The format of bitmaps sent to the
clipboard is operating system dependent: output is stored as a PICT image on the
Macintosh, as a device-independent bitmap under Windows, and as an Encapsulated
PostScript (EPS) image under Unix and VMS.

Creating Clipboard Objects

The IDLgrClipboard::Init method takes no arguments. Use the following statement to
create a clipboard object:

myClipboard = OBJ_NEW('IDLgrClipboard')

This creates an object that represents the system-native clipboard buffer.

See IDLgrClipboard::Init in the IDL Reference Guide for details on creating
clipboard objects.
Using IDL Clipboard Objects

676 Chapter 28: Using Destination Objects
Printer Objects

Objects of the IDLgrPrinter class represent a physical printer onto which graphics
hierarchies can be rendered.

Creating Printer Objects

The IDLgrPrinter::Init method takes no arguments. Use the following statement to
create a printer object:

myPrinter = OBJ_NEW('IDLgrPrinter')

This creates an object that maintains information about the printer. By default, this
information pertains to the default printer installed for your system. To select a
different printer or setup attributes of the printer, use the printer dialogs described in
the next section.

See IDLgrPrinter in the IDL Reference Guide for details on creating printer objects.

Color Model

By default, printer objects use the RGB color model. To create a printer that uses the
Indexed color model, set the COLOR_MODEL property of the printer object equal to
1 (one) when creating the printer:

myWindow = OBJ_NEW('IDLgrPrinter', COLOR_MODEL=1)

You cannot change the color model used by a printer after it has been created.

See Chapter 20, “Working with Color” for a discussion of the two color models.

Printer Dialogs

IDL includes two functions useful for controlling printers and printjobs.

DIALOG_PRINTERSETUP

Call the DIALOG_PRINTERSETUP function with the object reference of a printer
object as its argument to open an operating system native dialog for setting the
applicable properties of a particular printer. DIALOG_PRINTERSETUP returns a
nonzero value if the user pressed the OK button in the dialog, or zero otherwise.

result = DIALOG_PRINTERSETUP(myPrinter)

See DIALOG_PRINTERSETUP in the IDL Reference Guide for details.
Printer Objects Using IDL

Chapter 28: Using Destination Objects 677
DIALOG_PRINTJOB

Call the DIALOG_PRINTJOB function with the object reference of a printer object
as its argument to open an operating system native dialog to initiate a printing job.
DIALOG_PRINTJOB returns a nonzero value if the user pressed the OK button in
the dialog, or zero otherwise.

result = DIALOG_PRINTJOB(myPrinter)

See DIALOG_PRINTJOB in the IDL Reference Guide for details.

Drawing to a Printer

To draw a graphics tree to a printer, call the IDLgrPrinter::Draw method. The
argument must be either an IDLgrView object or an IDLgrScene object.

myPrinter -> Draw, myView

or

myPrinter -> Draw, myScene

All objects contained within the scene or view will be drawn to the printer.

Note
The scene or view to be drawn may be the same as the scene or view being
displayed in one or more windows.

Note
The IDLgrPrinter::Draw method has keywords that allow you to send the image as
a bitmap or vector format. For more information, see IDLgrPrinter::Draw in the
IDL Reference Guide.

Starting a New Page on a Printer

To ensure that any subsequent calls to the IDLgrPrinter::Draw method occur on a
new page, call the IDLgrPrinter::NewPage method:

myPrinter -> NewPage
Using IDL Printer Objects

678 Chapter 28: Using Destination Objects
Submitting a Printer Job

To actually submit a printer job, call the IDLgrPrinter::NewDocument method. This
method and submits the printing job (consisting of all previous calls to
IDgrPrinter::Draw and IDLgrPrinter::NewPage) to the printer.

After this method has been called, the printer is prepared to accept a new batch of
graphics calls (via IDLgrPrinter::Draw).

myPrinter -> NewDocument
Printer Objects Using IDL

Chapter 28: Using Destination Objects 679
VRML Objects

Objects of the IDLgrVRML class allow you to save the contents of an Object
Graphics hierarchy into a VRML 2.0 format file. The graphics tree can only contain a
single view due to limitations in the VRML specification. The resulting VRML file is
interactive and allows you to explore the geometry interactively using a VRML
browser.

Creating VRML Objects

The IDLgrVRML::Init method takes no arguments. Use the following statement to
create a VRML object:

myVRML = OBJ_NEW('IDLgrVRML')

This creates an object that will convert object hierarchies rendered to it into VRML
format files.

See IDLgrVRML in the IDL Reference Guide for details on creating and using
VRML objects.
Using IDL VRML Objects

680 Chapter 28: Using Destination Objects
VRML Objects Using IDL

Chapter 29:

Subclassing from
Object Graphics

This chapter describes the creation of composite classes or subclasses in Object Graphics. The
following topic is covered in this chapter:
Creating Composite Classes or Subclasses 682
Using IDL 681

682 Chapter 29: Subclassing from Object Graphics
Creating Composite Classes or Subclasses

Research Systems, Inc., has provided a rich set of basic objects that an be used for
creating visualizations. You may find that you are using a certain combination of
these objects again and again within your applications for a particular purpose. If this
is the case, you might want to consider defining a composite object class that
encapsulates the combination of those subcomponents.

In fact, Research Systems has already defined a few composite classes on your
behalf. These include the IDLgrColorbar object and the IDLgrLegend object found in
the IDL Reference Guide. You will find the IDL code for these objects in the lib
directory of your IDL distribution.

Another example can be found in the idlexshow3_ _define.pro in the
examples/visual/utility subdirectory. In this case, an image, surface, and
contour representation are combined into a single object called the IDLexShow3
object. To see this object being used in an application, run the show3_track routine,
defined in the file show3_track.pro in the examples/visual directory. This
example creates the following visualization:

Figure 29-1: Show3_track example
Creating Composite Classes or Subclasses Using IDL

Chapter 29: Subclassing from Object Graphics 683
You may also find that you want to customize one or more of the classes available in
Object Graphics. For instance, you may want to create a specialized image object that
can handle 16-bit palettes. An example of this is provided in
idlexpalimage_ _define.pro in the examples/visual/utility
subdirectory of the IDL distribution.
Using IDL Creating Composite Classes or Subclasses

684 Chapter 29: Subclassing from Object Graphics
Creating Composite Classes or Subclasses Using IDL

Chapter 30:

Performance Tuning
Object Graphics

The following topics are covered in this chapter:
Overview . 686
Polygon Mesh Optimization 687
Normal Computations 690
Retained Graphics and Expose Events . . . 691

Improving Redraw Performance 692
Back-face Culling 693
Lighting . 694
Using IDL 685

686 Chapter 30: Performance Tuning Object Graphics
Overview

The Object Graphics subsystem is designed to provide a rich set of graphical
functionality that can be displayed in reasonable time. This section offers suggestions
on how to utilize the object graphics in such a way as to take full advantage of
performance enhancement benefits.
Overview Using IDL

Chapter 30: Performance Tuning Object Graphics 687
Polygon Mesh Optimization

IDLgrPolygon objects consist of a set of vertices and, optionally, a connectivity array
describing how those vertices are to be connected to form one or more polygons.
Internally, IDL can identify three special types of polygonal meshes that may be
represented very efficiently and therefore displayed substantially faster than
individually described polygons. These special mesh types are characterized by
repetitive patterns in the connectivity of the vertices. In performance terms, it is to the
user’s advantage to utilize this optimization whenever possible by appropriately
preparing the connectivity list according to the rules described for the corresponding
type of mesh. The special mesh types are as follows:

Quad Strips

A quad strip is a connected set of four-sided polygons (see “Polygon Mesh
Optimization” in Chapter 23). To take advantage of accelerated quad strips, the
connectivity should be set up so that the first and last vertex for one quad are the
same as the second and third of the previous quad.

For example, to use a quad strip optimization for the polygons in the figure above, the
connectivity for the vertices should be as follows:

Figure 30-1: Quad Strip Mesh

0 1 2 3

4 5 6 7

8 9 10 11
Using IDL Polygon Mesh Optimization

688 Chapter 30: Performance Tuning Object Graphics
verts = [v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10 ,v11]
oPoly = OBJ_NEW('IDLgrPolygon', verts, $

POLYGON=[4, 0, 1, 5, 4, $
4, 1, 2 ,6, 5, $
4, 2, 3, 7, 6, $
4, 4, 5, 9, 8, $
4, 5, 6, 10, 9, $
4, 6, 7, 11, 10])

Triangle Fans

A triangle fan mesh is a set of connected triangles that all share a common vertex. To
take advantage of accelerated triangle fans, the connectivity should be set up so that
the first vertex in every triangle is the common vertex, and the second vertex is the
same as the last vertex of the previous triangle.

For example, to use a triangle fan optimization for the polygons in the left-hand
figure below, the connectivity for the vertices should be as follows:

verts = [v0, v1, v2, v3, v4, v5]
oPoly = OBJ_NEW('IDLgrPolygon', verts, $

POLYGON=[3, 0, 1, 2, $
3, 0, 2, 3, $
3, 0, 3, 4, $
3, 0, 4, 5])

Triangle Strips

A triangle strip mesh is a set of connected triangles, each of which share two vertices
with the previous triangle. To take advantage of accelerated triangle strips, the

Figure 30-2: Triangle Fan Mesh (left) and Triangle Strip Mesh (right)

2 3 4

1 0 5

0 2 4

1 3 5
Polygon Mesh Optimization Using IDL

Chapter 30: Performance Tuning Object Graphics 689
connectivity should be set up so that the first two vertices in every triangle must have
been in the previous triangle and ordered in the same direction (counter-clockwise or
clockwise) and the final vertex must be new.

For example, to use the triangle strip optimization for the polygons in the right-hand
figure above, the connectivity for the vertices should be as follows:

verts = [v0, v1, v2, v3, v4, v5]
oPoly = OBJ_NEW('IDLgrPolygon', verts, $

POLYGON=[3, 0, 1, 2, $
3, 2, 1, 3, $
3, 2, 3, 4, $
3, 4, 3, 5])

No limits are imposed on the number of meshes or types of meshes within any given
polygon object. A single POLYGON keyword value might contain any combination
of quad strips, triangle strips, triangle fans, or non-specialized polygons.

As the length of the strips or fans grows, and as the percentage of vertex connections
that are optimized by the rules described above increases, the performance upgrade
becomes more perceptible. The optimizations are a result of minimizing the time
required to perform vertex transforms. If the drawing of the polygons are otherwise
limited by fill-rate (as might occur on some systems if texture-mapping is being
applied, for instance), these optimizations may not be of significant benefit. In any
case, performance will not be hindered in any way by utilizing these specialized
meshes, so it is suggested that they be applied whenever possible.

Note
The IDLgrSurface object always takes advantage of the quad mesh optimization
automatically without programmer intervention.
Using IDL Polygon Mesh Optimization

690 Chapter 30: Performance Tuning Object Graphics
Normal Computations

For IDLgrPolygon objects, normal vectors are computed by default at each vertex by
averaging the normals of the polygons that share that vertex. These normals are then
used to compute illumination intensities across the surface of the polygon.
Computing default normals is a computationally expensive operation. Each time the
polygon is drawn, this computation will be repeated if the polygon has changed
significantly enough to warrant a new internal cache (for example, if the connectivity,
vertices, shading, or style have changed). In some cases, the normals do not actually
change as other modifications are made. In these cases, the expense of default normal
computation can be bypassed if the user provides the normals explicitly (via the
NORMALS keyword). These normals can be computed by using the
COMPUTE_MESH_NORMALS routine in the IDL Reference Guide. The resulting
normals, if passed in via the NORMALS keyword of the IDLgrPolygon object, will
be reused every time the polygon is drawn (without further computation) until they
are replaced explicitly by the user.
Normal Computations Using IDL

Chapter 30: Performance Tuning Object Graphics 691
Retained Graphics and Expose Events

During the course of an IDL session, it is possible that an IDL window will be
obscured by another window. When the hidden window is brought to the front, its
contents need to be regenerated. The user interface toolkit portions of the window are
repaired automatically. However, the drawable portion of the window (in which
graphics are rendered) requires special attention. The user can choose between two
methods to handle this situation. The first option is to set the RETAIN property on the
IDLgrWindow object to 2, which suggests that IDL is required to retain a backing
store of the entire contents of the window. When the window is exposed, the backing
store will be copied to the screen. The second option is to set the RETAIN property to
0 (no retention), and to request that expose events are to be reported for draw
widgets. Whenever a portion of the window becomes exposed, an event is generated.
The event handler for the drawable can then re-issue a draw of the appropriate
contents for that window.

While the second option may seem a bit more complicated, it is to the users
advantage to take this approach for performance reasons. When RETAIN is 0, the
window device drivers are able to utilize a double-buffered rendering scheme that can
capitalize on hardware acceleration. For interactive applications, this hardware
acceleration can have a crucial impact on the perceived manipulation capabilities of
the interface. When RETAIN is 2, on the other hand, IDL will render to an offscreen
pixmap, which often relies on a software implementation. If several drawing calls are
issued in a row, the performance may be noticeably slower.
Using IDL Retained Graphics and Expose Events

692 Chapter 30: Performance Tuning Object Graphics
Improving Redraw Performance

Within interactive graphics applications, it is often necessary to redraw a given view
over and over again (for example, as the user clicks and drags within the view to
manipulate one or more objects). During those redraws, it may be that only a small
subset of the objects within the view is changing, while the remaining objects are
static. In such a case, it may be more efficient to take a snapshot of the unchanged
portion of the view. This snapshot can be reused for each draw, and only the changing
portion of the view needs to be re-rendered. This process is called instancing. For
more information on instancing, see “Instancing” on page 672.
Improving Redraw Performance Using IDL

Chapter 30: Performance Tuning Object Graphics 693
Back-face Culling

For polygonal meshes that describe a closed shape (for example, a sphere), it is often
wasteful to spend any time rendering the polygons whose normal vector faces away
from the eye because it is known that the polygons whose normals face toward the
eye will obscure those back-facing polygons. Therefore, for efficiency, it may be
beneficial to employ back-face culling, which is simply the process of choosing to
skip the rasterization of any polygons whose normal vector faces away from the eye.

On an IDLgrPolygon object, set the REJECT property to a value of 1 to enable
back-face culling.
Using IDL Back-face Culling

694 Chapter 30: Performance Tuning Object Graphics
Lighting

Lighting computations are generally set up to compute the light intensity based on the
normal vector for the polygon. If the polygon normal faces away from the eye, the
lighting model will likely determine that the light intensity for that polygon is zero.
When the polygonal mesh being rendered is a closed surface, this is not a problem
because the back-facing polygons will always be obscured. However, when the
polygon mesh represents an open shape (for which back-facing polygons may be
visible), the dark appearance of these polygons may hinder the user’s perception of
the overall shape. In such a case, two-sided lighting can be useful. Two-sided lighting
is the process of reversing the normals for all back-facing polygons before computing
the light intensities for that polygon.

In IDL’s Object Graphics, two-sided lighting is enabled by default. When the
additional lighting calculation is not required, one-sided lighting can be used to
improve rendering performance. On an IDLgrModel object, set the LIGHTING
property to a value of 1 to enable one-sided lighting.
Lighting Using IDL

Index

Symbols
!EDIT_INPUT system variable, 36
!MAP system variable, 349
!ORDER system variable, 384
!P.MULTI system variable, 280
operator, 447
operator, 448
$ character, 55
.sav files, 60
@ character, 56

Numerics
3D

text objects, 604
transformations, 333

A
aborting IDL, 54
accuracy

floating-point operations, 444
numerical algorithms, 442

action routines, 145
Aitoff map projection, 360
Albers equal-area conic projection, 370
aliasing, 420
aligning text objects, 603
alpha blending, 641, 654
alpha channel, 640
analytic signal, 422
animation, 331
annotating text objects, 603
annotations

plots, 265
Using IDL 695

696
ARMA filter, 427
arrays

column-major indexing, 446
memory allocation under VMS, 32
multiplying, 447
rotating, 325
row-major indexing, 446
sparse, 484
stored in structure form, 484
symmetric, 447

ASCII files
importing using macros, 197
reading, 233

atomic graphic objects, 512, 529
attribute objects, 515, 530, 570
autoregressive moving average filters, 427
axes

logarithmic, 278
plotting, 296
range, 261
scaling, 259

axis object, 512, 585
axis tick labels, 601
axis title, 601
azimuthal equidistant map projection, 359
azimuthal map projections, 356

B
back-face culling, 693
backing store

Macintosh platform, 178
Motif platform, 129
Windows platform, 91

bandpass filters, 428
bandstop filters, 428
bar charts, 272
baseline changes to text objects, 604
batch files, 56

IDLDE startup file
Windows platform, 93

startup file on Macintosh, 182
startup file on Motif platform, 131
using as startup file

discussion, 58
batch mode, 56
bilinear

transform, 434
binary data

importing using macros, 203
template interface, 241

boundaries
maps, 350

box charts, 272
boxcar filter, 432
Bristol Technology, 51
buffer object, 517, 674
buffer objects

creating, 674
overview, 674

byte ordering
big endian, 204, 241
binary data, 204, 241
little endian, 204, 241
native method, 204, 241

C
CALDAT, 287, 593
calendar dates

stored as Julian, 285, 591
CDE File Manager, 153
cell drawing using contour method, 306
central map projection, 358
changing working directory on Macintosh, 187
channels

alpha, 640
image objects, 640

CIA World Map database, 376
clipboard object, 517
clipboard objects

creating, 675
Index Using IDL

697
clipboard support
graphics windows

Macintosh, 162
Windows, 68

clipping planes, 543
cluster analysis

routines, 495
color

mapping voxel values, 653
pixel depth on Macintosh, 179

color indices, 397
color maps

flashing, 136
sharing (Motif), 136

color model
destination objects, 562
digital data, 559
indexed, 560
palette objects, 563
printers, 676
RGB, 559, 561
window objects, 667

color palette
Macintosh platform, 178
Windows platform, 99

color property
specifying color values, 564

color systems
HLS, 389
HSV, 389
RGB, 389

color tables
common block, 394
loading, 390
obtaining, 394
overview, 389
predefined, 392
switching between devices, 395

colorbar object, 514
colorbar objects

creating, 644

overview, 644
using, 644

coloring
vertices, 615

colors
indices, 397
reserving for IDL, 136
tables, See color tables

COLORS common block, 394
column-major indexing, 446
combining

contour and surface plots, 333
combining transformations, 548
Command Input Line

anchoring on Macintosh platform, 176
Macintosh platform, 156
Motif platform, 105
Windows platform, 66

command line
switches, 26

command line options
Motif platform, 137, 143

command recall, 34
setting the buffer, 36

command stream substitutions on Motif, 143
Common Desktop Environment (CDE) File
Manager, 153
common methods in object classes, 508
compiling

programs on Macintosh, 187
compiling automatically, 53
compiling files

IDLDE
Windows platform, 75

Macintosh platform, 167
Motif platform, 112

composite classes, 682
concave polygons, 581
conformal conic map projection, 369
contacting RSI, 20
container object, 510
Using IDL Index

698
continents, 352
contour object, 512, 608
contour plots

direction of grade, 319
filling, 318
labeling, 316
overlaying images, 312, 312
overview, 305
smoothing, 317

Control Panel Buttons
modifying in Motif, 142
Motif platform, 104

controlling the device cursor, 400
convex polygons, 581
Cooley-Tukey algorithm, 421
coordinate conversion, 549
coordinate systems

scaling coordinates, 536
transformation, 536

coordinate transformations, 549
coordinates

converting, 257, 328
data, 256
device, 256
homogeneous, 323
normal, 256

correlation
analysis, 450
coefficient, 450, 451
routines, 453

creating
buffer objects, 674
clipboard objects, 675
colorbar objects, 644
contour objects, 608
image objects, 640
legend objects, 620
light objects, 633
plot objects, 616
polygon objects, 610
polyline objects, 615

printer objects, 676
surface objects, 628
volume objects, 650
VRML objects, 679
window objects, 667

creating axis objects, 585
creating text objects, 603
culling to improve performance, 693
cursor

controlling position, 400
determining position, 300

curve fitting
discussion, 454
routines, 455

customizing IDL
Macintosh platform, 175
Motif platform, 123
Windows platform, 86

cyclical fluctuation, 487
cylindrical equidistant map projection, 368
cylindrical map projections, 366

D
data coordinates, 256
data picking, 658, 662
date/time

precision, 286, 592
date/time data

displaying, 288, 593
generation, 287, 592
using system variables to display, 293

debugging
executive commands, 38
IDLDE

Windows platform, 75
Macintosh platform, 167
Motif platform, 112

debugging in IDL
Macintosh platform, 161

default font, 571, 606
Index Using IDL

699
Delaunay triangulation, 463
derived variables, 491
destination device, 666
destination objects, 517

color models, 562
drawing, 666

device
controlling the cursor, 400
coordinates, 256
graphics

independent, 252
independent graphics, 252

device independent graphics, 505
DFT, 409
dialogs for printing, 676
dicer, 344
differences among platforms

Macintosh, 186
Windows, 98

differentiation
routines, 472

digital filters, 427
digital signal processing, 405
DIGITAL_FILTER function, 428
Direct Graphics, 504

clipboard support
Macintosh platform, 162
Windows platform, 68

overview, 250
direct graphics

printing, 51
direction of grade, 319
discrete Fourier transform, 409
discrete wavelet transform, 424
DISPLAY environment variable, 31
display graphics driver (Windows), 98
displaying images

overview, 383
displaying isosurfaces, 342

document windows
IDLDE

Windows platform, 67
Macintosh platform, 159

dot product, 449
draw widgets, 562, 667
drawing

continents on maps, 352
destination device, 666
meridians, 350
parallels, 350

drawing to a printer object, 677
DWT, 424

E
editing

command line, 34
editing resource files, 135
editor windows

IDLDE
Windows platform, 67

Macintosh platform, 159
Motif platform, 106

eigenvalues
complex, 458
real, 457
repeated, 460, 461
routines for computing, 462

eigenvectors
complex, 458
real, 457
repeated, 461
routines for computing, 462

endian
big, 204, 241
byte ordering, 204, 241
little, 204, 241

environment variables
DISPLAY, 31, 31
IDL_ARRAY_MEMORY_SIZE, 32
Using IDL Index

700
IDL_DEVICE, 30
IDL_DIR, 30
IDL_DLM_PATH, 30
IDL_HELP_PATH, 31
IDL_PATH, 31
IDL_STARTUP, 31, 58
IDL_TMPDIR, 31
LM_LICENSE_FILE, 32
PATH, 24
path expansion, 33
TERM, 32
UNIX platform, 31
used by IDL, 30
VMS logical names, 32

equal-area map projection, 370
erasing a window object, 670
error

floating-point, 444
mathematical error assessment, 445
rounding, 444
truncation, 445

error handling on Macintosh, 188
executive commands, 38
exiting IDL, 29
expose events, 691
exposing window objects, 670
eye position, 541

F
far clipping plane, 543
Fast Fourier transform, 409

implementation, 421
FFT, 409, 416

Cooley-Tukey algorithm, 421
implementation, 421

file selection
using compound widgets, 228
using dialogs, 226

files
filenames

Macintosh platform, 186
Windows platform, 98

Message-of-the-Day
Macintosh platform, 184
Windows platform, 97

MPEG, 646
pointer position

Windows platform, 99
restoring

Windows platform, 99
saving

Windows platform, 99
saving images, 646
specifying search path

Macintosh platform, 183
Motif platform, 133
Windows platform, 95

filling contours, 318
filling polygons, 271, 611
filters

autoregressive moving average, 427
bandpass, 428
bandstop, 428
boxcar, 432
digital, 427
FIR, 427
highpass, 428
IIR filter, 427
Kaiser’s window, 428
lowpass, 428
moving average, 427
notch, 434
rectangular, 432

finding text
IDLDE

Windows platform, 74
Macintosh platform, 166
Motif platform, 111
Index Using IDL

701
finite
impulse response filters, 427

FIR filter, 427
fixed pixels, 314
flashing color maps, 136
floating-point accuracy, 444
font object, 515, 571
FONT property of text objects, 606
fonts

default, 571, 606
hardware, 266
Hershey, 572
selecting, 266
specifying

Macintosh platform, 176, 180
Motif platform, 132
Windows platform, 95

TrueType, 571
type size, 606
type style, 606

Fourier transform
discrete, 409

Fourier transforms
fast, 409

frequency plot leakage, 414
frequency plot smearing, 414
frequency response function, 435

G
Gaussian

iterated quadrature, 468
Gauss-Krueger map projection, 367
general perspective map projection, 362
gnomic map projection, 358
gnomonic map projection, 358
Gouraud shading, 339
grade, 319
graphics

atoms, 512, 529
clipboard support

Windows, 68
coordinate systems, 256, 323
data picking, 658
device independent graphics, 252, 505
devices, 251
devices for Direct Graphics, 504
driver information (Windows), 98
IDLDE windows

backing store for Windows, 91
changing Windows preferences, 90
layout in Windows platform, 90
OS clipboard support

Windows, 68
modes, 250, 504
object-oriented, 252, 505
selecting, 658
two-dimensional arrays, 304

graphics hierarchy, 524
graphics object tree, 524
graphics windows

backing store for Macintosh, 178
backing store for Motif, 129
changing Macintosh preferences, 178
layout in Motif platform, 106
layout on Macintosh platform, 178
layout on Motif platform, 128
OS clipboard support on Macintosh, 162

graphs, 607
graticule, 351
gridding

data extrapolation, 463
Delaunay triangulation, 463
drawing meridians, 350
routines, 463
uniformly-spaced planar data, 463

gridding plots, 275

H
Hammer-Aitoff map projection, 361
Hamming window, 418
Using IDL Index

702
Hanning window, 416
HDF files

importing using macros, 210
HDF-EOS files

importing using macros, 210
helper objects, 516, 530
Hershey fonts, 572
hidden line removal, 631
hidden object classes, 521
hiding window objects, 670
hierarchy of objects, 524
highpass filters, 428
high-resolution continent outlines, 376
Hilbert transform, 422
histogram

plot, 406
plotting mode, 269

HLS color system, 391
home directory

Macintosh platform, 182
Motif platform, 133
Windows platform, 93

homogeneous coordinates, 323
HSV color system, 391
hue, 391
hypothesis testing

routines, 467
statistics, 465

I
iconifying windows, 670
IDL

Development Environment
Macintosh platform, 155
Motif platform, 102

Direct Graphics, 250, 504
Object Graphics, 250, 504

IDL GUIBuilder
generating files, 71
IDLDE

Windows platform, 67
IDL Printing, 40
IDL_ARRAY_MEMORY_SIZE, 32
IDL_Container class, 510
IDL_DEVICE environment variable, 30
IDL_DIR environment variable, 30
IDL_DLM_PATH environment variable, 30
IDL_HELP_PATH environment variable, 31
IDL_PATH environment variable, 31
IDL_STARTUP environment variable, 31, 58
IDL_TMPDIR environment variable, 31
IDLDE

Windows platform
IDL GUIBuilder, 67

IDLDE Graphics window
Macintosh, 178

IDLDE windows
Editor

Motif platform, 106
Windows platform, 67

Graphics
Motif platform, 106
preferences in Windows, 90

IDLgrAxis class, 512
IDLgrBuffer class, 517
IDLgrClipboard class, 517
IDLgrColorbar class, 514
IDLgrContour class, 512
IDLgrFont class, 515
IDLgrImage class, 512
IDLgrLegend class, 514
IDLgrLight class, 512
IDLgrModel class, 511
IDLgrMPEG class, 518
IDLgrPalette class, 515
IDLgrPattern class, 515
IDLgrPlot class, 512
IDLgrPolygon class, 513
Index Using IDL

703
IDLgrPolyline class, 513
IDLgrPrinter class, 517
IDLgrScene class, 511
IDLgrSurface class, 513
IDLgrSymbol class, 515
IDLgrTessellator class, 516
IDLgrText class, 513
IDLgrView class, 511
IDLgrViewgroup class, 511
IDLgrVolume class, 513
IDLgrVRML class, 517
IDLgrWindow class, 517
IIR, 427
IIR filter, 434
image interleaving, 640
image object, 512
image objects

alpha blending, 641
channels, 640
creating, 640
interleave property, 643
palette, 643
pixel interleaving, 640
saving as MPEG file, 646
saving to a file, 646
using, 641

image processing
array indexing format, 446

images
combining with 3D graphics, 337
determining file type, 223
dialog for reading, 219
dialog for saving, 221
displaying, 383
displaying on Macintosh, 179
file selection

compound widget, 228
using a dialog, 226

macros for importing, 193
orientation, 383
overlaying with contour plots, 312

overview, 381
position in display, 384
processing, 380, 382
query file type, 223, 224
querying, 223
raster, 381
read routines, 224
reading from display, 387, 398
routines, 382
scaling, 385
size of display, 384
writing routines, 225

import macro
ASCII files, 197
binary files, 203
image files, 193
scientific data formats, 210

include files, 52
indexed color model, 559, 560
indexing

arrays
column-major format, 446
row-major format, 446

arrays in IDL, 446
infinite impulse response filters, 427
initialization of objects, 519
instancing

back-face culling, 693
interactive graphics, 672
lighting, 694
redraw performance, 692
window objects, 672

integration
bivariate functions, 469
discussion, 468
numerical, 468
routines, 472
trivariate functions, 470

interactive graphics
instancing, 672
Using IDL Index

704
interleaving
image, 640
image objects, 640
line, 640
pixel, 640
planar, 640
scanline, 640

interpolation
routines, 463
tabulated data points, 463

interpolation of voxel values, 654
interrupting

program execution, 53
variable context, 54

isosurfaces, overview, 342

J
journaling, 61
Julian dates and times, 285, 591
Julian dates/time

calendar conversion, 285, 591

K
Kaiser filter, 428
keyboard interrupt, 53
keyboard shortcuts

IDLDE
Windows platform, 84

Motif platform, 121

L
Lambert’s conformal conic map projection,
369
Lambert’s equal area map projection, 360
leakage, 414
legend object, 514, 620

life-cycle methods, 509
light object, 512
light objects

creating, 633
overview, 633
types of lights, 633
using, 634

light source
changing parameters, 340
shading, 339

lighting, 653, 694
lightness, 391
line editing, 34
line interleaving, 640
linear

algebra, 450
correlation, 450
systems

condition number, 473
overdetermined, 474
solving simultaneous equations, 473
underdetermined, 476

linear equations, simultaneous, 479
linear systems

routines, 479
LM_LICENSE_FILE variable, 32
location

object graphics to view area, 536
location of text, 603
logarithmic

plots, 587
scaling, 278

logical names, See environment variables.
logical unit number

Macintosh platform, 188
LOGIN.COM file, 24
lowpass filters, 428
LUN

Macintosh-specific differences, 188
Index Using IDL

705
M
MA filter, 427
Macintosh

backing store, 178
batch files, 182
changing working directory, 187
color palette, 178
compiling functions and procedures, 187
displaying images, 179
editor windows, 159
error handling, 188
file search path, 183
IDLDE, 155
LUN differences, 188
mouse differences, 186
optimizing performance with memory, 184
pixel depth, 179
positioning file pointers, 188
reading files, 188
saving files, 188
writing files, 188

macro
importing

ASCII files, 197
binary data, 203
HDF files, 210
HDF-EOS files, 210
image files, 193
NETCDF files, 210

magnitude
signal spectra, 413

main IDL directory
Macintosh platform, 182
Motif platform, 133
Windows platform, 93

main programs, 52
main window

IDLDE preferences
Windows platform, 88

main window preferences
Macintosh platform, 175

Motif platform, 124, 126
map projections

Aitoff, 360
Albers equal-area conic, 370
azimuthal, 356
azimuthal equidistant, 359
boundaries

specifying, 350
central gnomic, 358
cylindrical, 366
cylindrical equidistant, 368
drawing continent boundaries, 350
general perspective, 362
gnomonic, 358
Hammer-Aitoff, 361
high-resolution outlines, 376
Lambert’s conformal conic, 369
Lambert’s equal area, 360
Mercator, 366
Miller cylindrical, 369
Mollweide, 372
orthographic, 356
overview, 348
pseudocylindrical, 371
Robinson, 371
satellite, 362
sinusoidal, 371
stereographic, 357
Transverse Mercator, 367
warping images to maps, 374

mathematics
error assessment routines, 445
routines, 442

maximum intensity projection, 654
maximum size

drawable window, 668
maximum values in plots, 617
memory

allocation under VMS, 32
graphics system use, 505
object graphics system, 252
Using IDL Index

706
optimizing performance
Macintosh platform, 184
Motif platform, 124
Windows platform, 87

Menu Editor
opening, 74

menus
IDLDE menu items

Windows platform, 69
Macintosh platform, 163
Motif platform, 107

Mercator map projection, 366
meridians, 350

graticules, 351
gridding, 351

Message-of-the-Day file
Macintosh platform, 184
Windows platform, 97

Microsoft Windows
mouse differences, 98

Miller cylindrical map projection, 369
minimization, 482

See also optimization
minimum values in plots, 617
missing data, 284
model class

methods, 546
model object, 511, 528
model objects

selecting models, 660
Mollweide map projection, 372
MOTD, See Message-of-the-Day.
Motif widgets, 145
mouse

determining position, 300
emulating three-button, 98, 186
Macintosh differences, 186

mouse cursor, 671
moving average filter, 427
MPEG object, 518

MPEG objects
overview, 646

multiple correlation coefficient, 451
Multiple Document Panel

IDLDE
Windows platform, 65

Multiple Document Window
Motif platform, 104

multiple plots on a page, 280
multiplying arrays, 447
multivariate analysis

routines, 495

N
near and far clipping planes, 543
NETCDF files

importing using macros, 210
new page, 677
Newton’s method, 480
non-interactive mode, 56, 59
nonlinear equations

discussion, 480
routines, 481

nonparametric hypothesis tests, 465
NORM_COORD function, 551
normal

coordinates, 256
normal computations, 614, 690
notch filter, 434
numerical integration, 468
Numerical Recipes in C, 443
Nyquist frequency, 420

O
object classes

attribute objects, 530
attributes, 515, 571
axis, 512, 585
Index Using IDL

707
buffer, 517, 674
clipboard, 517
colorbar, 514
common methods

Cleanup, 508
GetProperty, 509
Init, 508
SetProperty, 509

composite objects, 514
container, 510
contour, 512, 608
destination objects, 517
file format objects, 518
font, 515, 571
helper objects, 516, 530
image, 512
legend, 514, 620
light, 512, 633
model, 511, 528

Rotate method, 547
Scale method, 548
Translate method, 546

MPEG, 518
naming conventions, 508
palette, 515, 574
pattern, 515, 575
plot, 512, 616
polygon, 513, 610, 687
polyline, 513, 615
printer, 517, 676
scene, 511, 525
structure, 511
surface, 513, 628
symbol, 515, 577
tessellator, 516, 581
text, 513, 603
TrackBall, 516
undocumented, 521
view, 511, 527
viewgroup, 511, 526
volume, 513

VRML, 517, 679
window, 517

Object Graphics, 504
classes, 501
clipboard support

Macintosh platform, 162
Windows platform, 68

composite classes, 682
device independent, 505
hierarchy, 511
instancing, 692
typographical conventions used, 508

object graphics
expose events, 691
indexed color model, 559
performance tuning, 687
printing, 51
setting properties, 519

object tree, 511, 524
object-oriented graphics, 505
objects

clipboard support
Macintosh, 162

Object Graphics, 250
clipboard support

Windows platform, 68
object-oriented

graphics, 252
Oetli, Thomas, 376
one-tailed hypothesis tests, 465
on-the-glass text, 604
opacity table, 652
operating system

issuing commands, 55
optimization

discussion, 482
routines, 483

orientation of text objects, 605
orthographic map projection, 356
outer product, 449
Using IDL Index

708
Output Log
IDLDE

Windows platform, 65
Macintosh platform, 156
Motif platform, 104

overlaying images, 312

P
palette

indexed color data, 643
palette object, 515, 574
palette objects, 563
parallel projection, 539
parallels, 350
parametric hypothesis tests, 465
partial correlation coefficient, 451
path

expansion using environment variables, 33
IDLDE

Windows platform, 95
Macintosh platform, 186
Motif platform, 133
specifying on Macintosh, 183

PATH environment variable, 24
pattern filling of polygon objects, 611
pattern object, 515, 575
performance

optimizing memory
Macintosh platform, 184
Motif platform, 124
Windows platform, 87

performance tuning, 687
perspective projection, 540
phase

signal spectra, 413
pixel interleaving, 640
pixels

fixed, 314
scalable, 312
scaling, 385

two-dimensional image arrays, 381
pixmap objects

using, 670
planar interleaving, 640
platform differences

Windows platform, 98
plot

maximum data values, 617
minimum data values, 617

plot object, 512, 616
plot objects

averaging points, 618
minimum and maximum values, 617
plotting symbols, 618

plots, 607
contour, 305
filled contour, 318
frequency smearing, 414
logarithmic, 278, 587
overplotting, 263
shaded surface, 339
step, 406
X versus Y, 258

plotting
annotation, 265
axes, 296
combining images with graphics, 337
date/time data, 285
font selection, 266
histogram style, 269
Julian date/time, 285, 591
keyword parameters, 255
location on page, 282
missing data, 284
multi-dimensional arrays, 304
multiple plots on a page, 280
object graphics example, 623
overplotting, 263
overview, 254
polar coordinates, 298
reverse axis, Object Graphics, 601
Index Using IDL

709
scaling axes, 259
surfaces, 320
symbols, 267, 268
titles, 260
two-dimensional arrays, 304

pointers
file positioning

Macintosh platform, 188
Windows platform, 99

polar plots, 298
polygon filling, 271
polygon mesh optimization, 687
polygon object, 513, 610, 687
polygon objects

back-face culling, 693
normal computations, 690
optimization methods, 687, 688, 689
quad strip mesh, 687
triangle fan mesh, 688
triangle strip mesh, 689

polygons, 581
polyline object, 513, 615
position of graphics, 536
positioning objects, 536
positioning text objects, 603
power spectrum, 415
preferences in IDL

Macintosh platform, 175
Motif platform, 123
Windows platform, 86

principal components analysis, 491
print manager, 51
printer object, 517, 676
printer objects

color model, 676
creating, 676
dialogs, 676
drawing, 677
starting a new page, 677
submitting print jobs, 678

Printing
IDL for Windows, 40
IDL Macintosh, 40
IDL UNIX, 40

printing
graphics, 51
IDLDE

Windows platform, 71
Macintosh platform, 164
Motif platform, 108

Printing in IDL, 40
pro files

double-clicking, 153
dragging and dropping on IDLDE, 153

program files
executing, 53
interrupting execution, 53

programming
format of program files, 52
main programs, 52

programs
creating .sav files, 60
restoring, 60

Project Window
overview, 65, 104, 157, 163

projection
overview, 539
parallel, 539
perspective, 540

projection matrix, 474
projections

Aitoff, 360
Albers equal-area conic, 370
azimuthal, 356
azimuthal equidistant, 359
central gnomic, 358
cylindrical, 366
cylindrical equidistant, 368
general perspective, 362
gnomonic, 358
Hammer-Aitoff, 361
Using IDL Index

710
high-resolution continent outlines, 376
Lambert’s conformal conic, 369
Lambert’s equal area, 360
Mercator, 366
Miller cylindrical, 369
Mollweide, 372
orthographic, 356
pseudocylindrical, 371
Robinson, 371
satellite, 362
sinusoidal, 371
stereographic, 357
Transverse Mercator, 367

properties
retrieving, 520
setting, 519

Properties dialog
opening, 73

properties of objects, 519
pseudocylindrical map projections, 371

Q
quad strip optimization, 687
quadrature function, 422
query

image file type, 224
querying

images, 223
quitting IDL, 29

R
raster images, 381
reading

ASCII data, 197, 233
binary data, 203, 241
data using macros, 193, 197, 203
HDF files, 210
HDF-EOS files, 210

image file types, 224
image files, 193, 219
images from the display, 387
NETCDF files, 210
scientific format data, 210

reading files
Macintosh platform, 188

recall buffer
changing, 36
IDLDE

Windows platform, 87
Motif platform, 124

recent files
IDLDE

Windows platform, 71
Macintosh platform, 163
Motif platform, 109

recent projects
IDLDE

Windows platform, 71
Motif platform, 109

rectangular
filter, 432

rendering
hardware versus software, 668
polygon objects, 610
polyline objects, 615
speed of volumes, 655
surface objects, 629

rendering process
rendering objects, 531

rendering style
polygon objects, 610

replacing text
IDLDE

Windows platform, 74
Macintosh platform, 166
Motif platform, 112

reserving colors, 136
resolution of map databases, 376
resource files, 135
Index Using IDL

711
resources for an X Window, 135
restore

files
Macintosh platform, 188
Windows platform, 99

restoring .sav files, 60
restoring windows, 671
retained graphics, 691
retrieving object properties, 520
revealing window objects, 670
reverse axis, Object Graphics, 601
RGB color model, 559, 561
RGB color system, 389
right-handed coordinate system, 323
Robinson map projection, 371
Rotate method, 547
rotating

arrays, 325
images, 325
views, 331

rotation, 546, 547
routines

cluster analysis, 495
correlation, 453
curve and surface fitting, 455
differentiation/integration, 472
eigenvalues/eigenvectors, 462
gridding/interpolation, 463
hypothesis testing, 467
linear systems, 479
mathematical error assessment, 445
multivariate analysis, 495
nonlinear equations, 481
optimization, 483
signal processing, 438
sparse arrays, 486
time-series analysis, 489

row-indexed sparse storage method, 484
row-major indexing, 446
RSI

electronic mail address, 20

postal address, 20
telephone and fax numbers, 20

running IDL, 24

S
sampled data analysis, 420
sampled images, 381
sampling

aliasing data, 420
satellite map projection, 362
saturation, 391
sav files, 60
save

files
Macintosh platform, 188
Windows platform, 99

saving
image files, 221

saving files
IDLDE

Windows platform, 70
Macintosh platform, 164
Motif platform, 108

saving windows, 671
scalable pixels, 312
Scale method, 548
scaling, 548, 548

axes, 259
coordinate systems, 536
graphics atoms, 546
images, 385
maps, 350
matrices, 324
pixels, 385

scanline interleaving, 640
scene object, 511
scene objects, 525
scientific data format

importing using macros, 210
Using IDL Index

712
search path
Macintosh platform, 183
Motif platform, 133
Windows platform, 95

seasonal effect, 487
selecting

graphic atoms, 659
views in a window object, 659

selection
model objects, 660
window objects, 659

setting
window object cursor, 671

setting properties
existing objects, 519
initialization, 519
objects, 519

shaded surfaces, 339
plotting, 339

shading
Gouraud interpolation, 339
light source, 339
parameters, 340
polylines, 615

shading polygon objects, 611
shared color maps (Motif), 136
shortcuts

keyboard
Motif platform, 121
Windows platform, 84

signal
analysis transforms, 408
processing, 405

signal processing routines, 438
simple polygons, 581
simultaneous linear equations, 473
singular value decomposition, 473
sinusoidal map projection, 371
sizing graphics windows

Macintosh platform, 178
Motif platform, 128

Windows platform, 90
skirts, 631
slicing volumes, 344
smearing frequency plots, 414
SMOOTH function, 432
smoothing contours, 317
sparse arrays, 484

routines, 486
standardized variables, 492
starting IDL, 24
startup

file
discussion, 58

file in IDLDE
Windows platform, 93

IDLDE preferences
Windows platform, 93

switches, 26
startup file

Macintosh platform, 182
Motif platform, 131

startup preferences
Macintosh platform, 182
Motif platform, 131

stationary series, 487
statistics

hypothesis testing, 465
routines, 442

Status Bar
IDLDE

Windows platform, 66
Motif platform, 105

step plot, 406
stereographic map projection, 357
stopping program execution, 53
structure objects, 511
structures

arrays stored in structure form, 484
submitting a print job, 678
support at RSI, 20
Index Using IDL

713
surface fitting
discussion, 454
routines, 455

surface object, 513
overview, 628

surface objects
creating, 628
hidden line removal, 631
interactive example, 636
rendering style, 629
shading, 630
skirts, 631
texture mapping, 632
using, 629

surfaces
plotting, 320

switches
command line, 26

symbol object, 515, 577
symbol use for polylines, 615
symbols

plots, 267, 268
symmetric arrays, 447
system variables

!EDIT_INPUT, 36
!MAP, 349
!ORDER, 384

T
technical support, 20
TERM environment variable, 32
tessellator object, 516, 581
text

replacing in IDLDE
Macintosh platform, 166
Motif platform, 112
Windows platform, 74

searching in IDLDE
Macintosh platform, 166
Motif platform, 111

Windows platform, 74
text object, 513, 603
texture mapping, 632
texture mapping polygon objects, 611
three-dimensional

coordinate conversion, 328
graphics, 323
transformation, 333

matrices, 323
tick labels, 601
tick marks, 275
TIMEGEN, 287, 592
time-series analysis, 487

routines, 489
titles

multiline on plots, 260
toolbars

IDLDE
Windows platform, 65

Motif platform, 103, 104, 142
TrackBall object, 516
transformation matrices, 323
transformations, 548

combining, 548
coordinate, 549
model class example, 552
model objects, 546
rotation, 546, 547
scaling, 546
translation, 546, 546

transforms
Fourier, 409
Hilbert, 422
Tustin bilinear, 434
wavelet, 424

Translate method, 546
translation, 324, 546, 546
transparency

alpha channel, 640
transparency of voxels, 652
Transverse Mercator map projection, 367
Using IDL Index

714
trend analysis, 487
triangle fan mesh, 688
triangle strip mesh, 688
true map scale, 350
true-color displays, 396
TrueType fonts, 571
Tustin transform, 434
two-tailed hypothesis tests, 465
typographical conventions, 16, 508

U
unconstrained minimizer, 482
undocumented object classes, 521
unsharp masking, 386
upward direction of text objects, 605
using

colorbar objects, 644
image objects, 641
pixmap objects, 670
volume objects, 650
window objects, 667, 670

UTM map projection, 367

V
Variable Watch Window

IDLDE
Windows platform, 66

variables
derived, 491
standardized, 491

vectors
multiplying, 449

view area, 536
view object, 511, 527
view volume

example programs, 544
finding, 544
overview, 543

viewplane rectangle, 543
viewgroup object, 511, 526
viewplane rectangle, 543
viewport, 536, 537
volume

visualization, 342, 344
volume object, 513
volume objects

attributes, 652
color values, 653
compositing, 654
creating, 650
interpolating values, 654
lighting, 653
opacity table, 652
overview, 650
rendering speed, 655
using, 650
zbuffering, 654

voxel transparency, 652
voxel values, 650
VRML object, 517, 679
VRML objects

creating, 679
overview, 679

W
wavelet transform, 424
window object, 517
window objects

color model, 667
creating, 667
draw widgets, 667
erasing, 670
exposing, 670
hiding, 670
iconifying, 670
instancing, 672
maximum size, 668
restoring, 671
Index Using IDL

715
saving, 671
selection, 659
setting the cursor, 671
using, 667, 670

windowing
Hamming windowed signal, 418

windowing algorithm
HANNING function, 416

windows
clipboard support for graphics, 68, 162
Editor

Macintosh platform, 159
working directory

changing on Macintosh, 187

writing
image files, 221
routines for image files, 225

writing files
Macintosh platform, 188

X
X - Y Plots, 258
X resources, 135
Xprinter, 51

Z
zbuffering, 654
Using IDL Index

716
Index Using IDL

	Online Guide
	Contents
	Overview
	About IDL
	Typographical Conventions
	Reporting Problems
	Background Information
	Double Check
	Describing The Problem
	Reproducibility
	Simplify the Problem
	Problems with Dynamic Loading
	Sending Data with Your Bug Report
	Contact Us
	Mail
	Telephone
	Electronic Mail

	Part I: The IDL Development Environment
	Running IDL
	Starting IDL
	Importing IDL Preferences from Previous Releases
	Startup Switches Accepted by IDL
	UNIX
	VMS
	Windows
	Macintosh

	Quitting IDL
	Quitting Command-Line Mode (UNIX and VMS)

	Environment Variables Used by IDL
	Environment Variables — All Platforms
	IDL_DEVICE
	IDL_DIR
	IDL_DLM_PATH
	IDL_HELP_PATH
	IDL_PATH
	IDL_STARTUP
	IDL_TMPDIR

	Environment Variables — UNIX
	DISPLAY
	TERM
	LM_LICENSE_FILE

	Logical Names — VMS
	IDL_ARRAY_MEMORY_SIZE

	Path Expansion

	Input to IDL
	Command Recall and Line Editing
	Changing the Number of Lines Saved

	Executive Commands
	Setting Up a Printer in IDL
	IDL Printing in Windows
	IDL Printing in Macintosh
	IDL Printing in UNIX
	Setting up a Printer with Xprinter
	Printer Setup Dialog Buttons
	Configuring Printer Setup Options
	Adding a New Printer to the List of Printer Choices
	To Define a New Port

	Modifying an Existing Port
	Matching a Printer Device to a Port
	Removing an Installed Printer

	Modifying Default Printer Setup Values
	Defining a Port
	Matching a Printer Type to a Defined Port
	Specifying a Default Printer
	Specifying Printer-Specific Options

	Printing Graphics
	Printing IDL Direct Graphics
	Printing IDL Object Graphics

	Preparing and Running Programs
	Format of Program Files
	Procedure
	Function
	Main Program
	Include File

	Executing Program Files
	Automatic Execution
	Explicit Execution

	Interrupting Program Execution
	Variable Context After Interruption
	Aborting IDL

	Issuing Operating System Commands
	Batch Execution
	Interpretation of Batch Statements
	Batch Examples

	Startup File
	Non-Interactive IDL
	SAVE and RESTORE
	Journaling

	The IDL for Windows Interface
	The Main IDL Window
	Docking/Undocking
	Menu Bar
	Tool Bars
	Project Window
	Multiple Document Panel
	Output Log
	Variable Watch Window
	Command Input Line
	Status Bar

	IDLDE Windows
	IDL Editor Windows
	IDL GUIBuilder Windows
	IDL Graphics Windows

	The Menu Items
	File Menu
	New
	Open... [Ctrl+O]
	Close
	Open Project...
	Save Project
	Save Project As...
	Close Project
	Save [Ctrl+S]
	Save As...
	Revert to Saved
	Generate .pro
	Print... [Ctrl+P]
	Print Setup...
	Recent Files
	Recent Projects
	Preferences...
	Exit [Ctrl+Q]

	Edit Menu
	Undo [Ctrl+Z]
	Redo [Ctrl+Y]
	Cut [Ctrl+X]
	Copy [Ctrl+C]
	Paste [Ctrl+V]
	Delete [Del]
	Select All
	Clear All [Ctrl+Del]
	Clear Log
	Properties
	Menu

	Search Menu
	Find... [Ctrl+F]
	Find Again [F3]
	Find Selection [Ctrl+E]
	Replace... [Ctrl+H]
	Replace Again [Shift+F3]
	Go To Line... [Ctrl+G]
	Go To Definition [Ctrl+D]

	Run Menu
	Compile filename.pro [Ctrl+F5]
	Compile filename.pro from Memory [Ctrl+F6]
	Compile All
	Run filename [Shift+F5]
	Resolve Dependencies
	Profile
	Test GUI [Ctrl+T]
	Break [Ctrl+Break]
	Stop [Ctrl+R]
	Reset
	Step Into [F8]
	Step Over [F10]
	Step Out [Ctrl+F8]
	Trace...
	Run to Cursor [F7]
	Run to Return [Ctrl+F7]
	Set Breakpoint [F9]
	Disable Breakpoint
	Edit Breakpoint...
	Up Stack [Ctrl+Up]
	Down Stack [Ctrl+Down]
	List Call Stack

	Project Menu
	Add/Remove Files...
	Groups...
	Options...
	Compile
	Build
	Run
	Export

	Macros Menu
	Edit...
	Import...
	Print Var
	Help On Var
	Import Image
	Import ASCII
	Import Binary
	Import HDF
	Demo

	Window Menu
	Next [F6]
	Previous [Shift+F6]
	Cascade
	Tile Horizontally
	Tile Vertically
	Arrange Icons
	Close All
	Command Input [Ctrl+I]
	Output Log [Ctrl+L]
	Variable Watch [Ctrl+A]
	Project
	Toolbars
	Status Bar
	Numbered Windows

	Help Menu
	Contents...[Ctrl+F1]
	Find Topic... [F1]
	Help on the IDL Dev Env...
	Help on the IDL Language...
	Help on Help...
	About IDL...

	Keyboard Shortcuts
	Customizing IDL
	General Preferences
	Program
	Log and Command Windows
	Files

	Layout Preferences
	Main window
	Show Window

	Graphics Preferences
	Window layout
	Backing Store
	True Type Fonts
	Default object graphics renderer

	Editor Preferences
	Startup Preferences
	IDL Main Directory
	Working Directory
	Startup file

	Fonts Preferences
	Path Preferences
	Search Path

	Message-of-the-Day File

	Windows IDL Differences
	A Note about Microsoft Windows Displays
	Getting Information About Your Graphics Device

	Using a Two-Button Mouse with IDL
	File Manipulation
	Filenames
	Save/Restore Files
	Positioning File Pointers

	Running IDL with Fewer than 256 Colors
	The Windows Palette

	The IDL for Motif Interface
	The Main IDL Window
	Menu Bar
	Tool Bars
	Control Panel Buttons
	Project Window
	Multiple Document Window
	Output Log
	Variable Watch Window
	Command Input Line
	Status Bar

	IDLDE Windows
	IDL Editor Windows
	IDL Graphics Windows

	The Menu Items
	File Menu
	New [Ctrl+N]
	Open [Ctrl+O]
	Close
	Open Project...
	Save Project
	Save Project As...
	Close Project
	Save [Ctrl+S]
	Save As... [Ctrl+W]
	Revert to Saved
	Print... [Ctrl+P]
	Print Setup
	Recent Files
	Recent Projects
	Preferences
	Exit [Ctrl+Q]

	Edit Menu
	Undo [Alt+Z]
	Redo [Alt+Y]
	Cut [Alt+X]
	Copy [Alt+C]
	Paste [Alt+V]
	Delete [Del]
	Select All
	Clear All
	Clear Log [Ctrl+Y]

	Search Menu
	Find... [Alt+F]
	Find Again [Alt+G]
	Find Selection [Alt+I]
	Enter Selection [Alt+T]
	Replace... [Alt+R]
	Replace & Find [Alt+P]
	Go To Line [Ctrl+G]
	Go To Definition [Ctrl+T]

	Run Menu
	Compile filename.pro [Ctrl+F5]
	Compile from Memory filename.pro [Ctrl+F6]
	Compile All
	Run filename [F5]
	Resolve Dependencies [Alt+F5]
	Profile
	Break [Ctrl+C]
	Stop [Ctrl+R]
	Reset
	Step Into [F8]
	Step Over [F10]
	Step Out [Ctrl+F8]
	Trace ...
	Run to Cursor [F7]
	Run to Return [Ctrl+F7]
	Set Breakpoint [F9]
	Disable Breakpoint
	Edit Breakpoint
	Up Stack [Ctrl+Up]
	Down Stack [Ctrl+Down]
	List Call Stack

	Project Menu
	Add/Remove Files...
	Remove Selected
	Move To
	Groups...
	Options...
	Compile
	Build
	Run
	Export

	Macros Menu
	Edit...
	Print Var
	Help On Var
	Import Image
	Import Ascii
	Import Binary
	Import HDF
	IDL Demo

	Window Menu
	Read Only
	Next [F11]
	Previous [Alt+F11]
	Cascade
	Tile
	Close All
	Configure
	Tool Bar
	Multiple Windows (Single Window)
	Open Windows

	Help Menu
	Help on IDL...
	Find Topic...
	Help on IDE...
	Help on Help
	About IDL

	Keyboard Shortcuts
	Using Preferences to Customize IDLDE
	General Preferences
	Program
	Log and Command Window
	Files

	Layout Preferences
	Main window
	Windows
	Control Panel

	Graphics Preferences
	Windows Size
	Backing Store
	Graphics Attributes

	Edit Preferences
	Startup Preferences
	Select IDL Main Dir ...
	Select Working Directory
	Select Startup File

	Font Preferences
	Path Preferences
	IDL Files Search Path

	Using Resources to Customize IDL
	X Resources in Brief
	Editing Resource Files
	Reserving Colors

	Command Line Options
	Example
	-nocommand
	/NOCOMMAND
	-command
	/COMMAND
	-nocontrol
	/NOCONTROL
	-control
	/CONTROL
	-nolog
	/NOLOG
	-log
	/LOG
	-nostartup
	/NOSTARTUP
	-startup
	/STARTUP
	-startupfile "file"
	/STARTUPFILE="file"
	-nostatus
	/NOSTATUS
	-status
	/STATUS
	-path "path"
	/PATH="path"
	-quiet
	/QUIET
	-readonly
	/READONLY
	-readwrite
	/READWRITE
	-single
	/SINGLE
	-multi
	/MULTI
	-view
	/VIEW
	-noview
	/NOVIEW
	-title "Title"
	/TITLE="Title"
	/VAX_FLOAT

	Modifying the Control Panel
	Bitmaps for Control Panel Buttons
	Examples
	Command Stream Substitutions

	Action Routines
	IdlBreakpoint
	IdlClearLog
	IdlClearView
	IdlCommandHide
	IdlCompile
	IdlControlHide
	IdlEdit
	IdlEditMacros
	IdlExit
	IdlFile
	IdlFileReadOnly
	IdlFunctionKey
	IdlInterrupt
	IdlListStack
	IdlLogHide
	IdlRecallCommand
	IdlReset
	IdlRun
	IdlSearch
	IdlStatusHide
	IdlStep
	IdlTrace
	IdlViewHide
	IdlWindows

	Modifying the Macros Menu
	Example
	Modifying other resources:
	Example

	CDE File Manager Support

	The IDL for Macintosh Interface
	The Main IDL Windows
	Output Log
	Command Input Line
	Variable Watch Window
	Project Window

	IDL Document Windows
	IDL Editor Windows
	Multiple Panes in the Editor Window
	The Breakpoint Column
	The Line Box
	Function Drop Down List

	Running With Breakpoints in The Editor Window
	Debug Windows
	Error Window
	IDL Graphics Windows

	The Menus
	File Menu
	New
	New Project...
	Open
	Open Selection
	Open Recent
	Close / Hide
	Save
	Save As...
	Revert to Saved
	Page Setup...
	Print
	Preferences
	Working Folder...
	Quit

	Edit Menu
	Undo
	Cut
	Copy
	Paste
	Clear
	Select All
	Shift Left
	Shift Right
	Comment Line
	Uncomment Line

	Search Menu
	Find...
	Find Again
	Find Selection
	Enter Selection
	Replace...
	Replace & Find Again
	Go To Routine Definition
	Go To Line...

	Run Menu
	Compile
	Compile from Memory
	Compile All
	Run
	Resolve Dependencies
	Profile...
	Continue
	Break
	Clear IDL
	Reset IDL
	Step Over
	Step Into
	Step Out
	Trace
	Run to Cursor
	Run to Return
	Set Breakpoint
	Disable Breakpoint
	Edit Breakpoints ...
	Clear All Breakpoints
	List Breakpoints
	List Call Stack

	Project Menu
	Add Window
	Add Files...
	Remove Selected Items
	Project Options...
	Project Groups...
	Compile Modified Files
	Compile All Files
	Build
	Run
	Test Interface
	Export...

	Macros Menu
	Edit Macros...
	Import Image
	Import Ascii
	Import Binary
	Import HDF
	Demo

	Window Menu
	Stagger
	Tile
	Command Input Anchored
	Command Input
	Output Log
	Variable Watch
	Macro Editor
	Profile
	Profile Results
	Breakpoints
	Error Window
	Open Editor Windows

	Help Menu
	About Balloon Help...
	Show Balloons
	IDL Online Help
	Help on Selection

	Customizing IDL
	General Preferences
	Lines to Save in Log Window
	Number of Recent Files
	Command Recall Buffer Size
	Anchor Command Window
	Default Text Formats
	Use Debugger
	Ask to Save Files on Compile
	Confirm Quit
	Change Working Directory on Open
	Save Command History
	Auto Complete Command Line
	Interpret Unix/DOS Paths
	Save Breakpoints on Quit
	Confirm reset_session

	Graphics Window Settings
	Number of Colors Used
	Default Window Width
	Default Window Height
	Backing Store
	Startup Depth
	Dither to Lower Depth Screens
	Size of TrueType Font Cache (in Glyphs)
	Object Graphics Renderer
	Hardware Font

	Edit Preferences
	Window Format
	Auto Indent

	Startup Settings
	Select IDL Main Dir...
	Select Startup File
	Use No Startup File

	Path Specifications
	Syntax Coloring
	Setting IDL’s Memory Partition
	Message-of-the-Day File

	Macintosh IDL Differences
	Using the Macintosh Mouse with IDL
	Specifying Paths
	Operating System Commands
	Changing the Current Working Directory

	File Manipulation
	Compiling Programs
	Save/Restore Files
	Logical Unit Numbers
	Positioning File Pointers

	Math Error Handling
	Macintosh-Specific File Information

	Part II: Reading and Writing Data
	IDL Macros for Importing Data
	Overview
	Using Macros to Import Image Files
	Using Macros to Import ASCII Files
	Using Macros to Import Binary Files
	Using Macros to Import HDF Files

	Reading and Writing Images
	List of Commands
	Compound Widgets and Dialogs
	Images (Generalized)
	Images (Specific Formats)

	Accessing Image Files Using Dialogs
	Selecting an Image File
	Saving an Image File

	Accessing General Image File Formats
	Querying an Image File
	Reading an Image File
	Writing an Image File

	Accessing Specific Image File Formats
	QUERY_* Routines
	READ_* Routines
	WRITE_* Routines

	Accessing Files Using Dialogs
	File Selection
	Directory Selection
	Multiple File Selection

	Accessing Files With Compound Widgets
	Selecting a File

	Reading and Writing ASCII Data
	Overview
	Reading an ASCII Data File
	Using the ASCII_TEMPLATE Function

	Advanced File Input/Output

	Reading and Writing Binary Data
	Overview
	Reading a Binary Data File
	Using the BINARY_TEMPLATE Function

	Advanced File Input/Output

	Part III: Using Direct Graphics
	Graphics
	Overview
	IDL Direct Graphics
	IDL Object Graphics

	Direct Graphics Plotting
	Overview
	Running the Example Code

	Plotting Keyword Parameters
	Correspondence with System Variables
	Example—The COLOR Keyword Parameter

	Direct Graphics Coordinate Systems
	DATA Coordinates
	DEVICE Coordinates
	NORMAL Coordinates
	Two-Dimensional Coordinate Conversion
	CONVERT_COORD Function
	X Versus Y Plots—PLOT and OPLOT
	Axis Scaling
	Multiline Titles
	Range Keyword
	Overplotting

	Annotation – The XYOUTS Procedure
	Font Selection

	Plotting Symbols
	Defining Your Own Plotting Symbols
	Histogram Mode

	Polygon Filling
	Bar Charts

	Tick Marks
	[XYZ]GRIDSTYLE
	[XYZ]MINOR
	[XYZ]THICK
	[XYZ]TICKFORMAT
	TICKLEN
	[XYZ]TICKNAME
	[XYZ]TICKS
	[XYZ]TICKV
	Example: Specifying Tick Marks
	More Tick Mark Examples

	Logarithmic Scaling
	Multiple Plots on a Page
	Specifying the Location of the Plot
	POSITION
	!P.POSITION
	!P.REGION
	!P.MULTI
	[XYZ]MARGIN
	![XYZ]MARGIN

	Plotting Missing Data
	Date/Time Plotting
	Julian Dates and Times
	Precision of Date/Time Data
	How to Generate Date/Time Data
	Displaying Date/Time Data on an Axis in Direct Graphics
	Displaying Date/Time Data on a Plot Display

	Displaying Date/Time Data on a Contour Display
	Using System Variables to Display Date/Time Data

	Using the AXIS Procedure
	Example: The AXIS Procedure
	Using AXIS with Polar Plots

	Using the CURSOR Procedure
	Simple Interactive Examples

	Plotting Multi- Dimensional Arrays
	Overview
	Running the Example Code

	Contour Plots
	Contouring Methods
	Cell Drawing
	Contour Following

	Example: Maroon Bells Peaks

	Overlaying Images and Contour Plots
	Overlaying with Scalable Pixels
	Overlaying with Fixed Pixels
	Method 1: Scale the Image to Fit the Display
	Method 2: Scale the Display to Fit the Image

	Additional Contour Options
	Labeling Contours
	Smoothing Contours
	Filling Contours
	Indicating Direction of Grade

	The SURFACE Procedure
	SURFACE Keyword Parameters
	Example

	Three-Dimensional Graphics
	Homogeneous Coordinates
	Right-Handed Coordinate System
	Transformation Matrices
	Translation
	Scaling
	Rotation
	T3D Procedure
	RESET
	TRANSLATE
	SCALE
	ROTATE
	PERSPECTIVE
	OBLIQUE
	XYEXCH
	XZEXCH
	YZEXCH

	Example: The Transformation Created by SURFACE
	Three-Dimensional Coordinate Conversion
	Establishing a Three-Dimensional Coordinate System
	Example
	Rotating the House

	Three-Dimensional Transformations
	Combining CONTOUR and SURFACE
	More Complicated Transformations
	Combining Images with Three-Dimensional Graphics

	Shaded Surfaces
	Shading Method
	Shading Parameters
	Examples Using SHADE_SURF

	Volume Visualization
	LOW
	SHADES
	Cloud Example
	Volume Visualization Tools
	SLICER3
	XVOLUME

	References

	Map Projections
	Overview
	MAP_SET
	MAP_GRID
	MAP_CONTINENTS
	MAP_IMAGE and MAP_PATCH
	Example Graphics

	The MAP_SET Procedure
	P0lat
	P0lon
	Rot
	MAP_SET Keywords
	CONTINENTS
	GRID
	ISOTROPIC
	LIMIT
	SCALE

	The MAP_GRID Procedure
	The MAP_CONTINENTS Procedure
	Graphics Techniques for Mapping
	Splitting
	3D Clipping
	Projection
	Rectangular Clipping

	Map Projections Described
	Azimuthal Projections
	Orthographic Projection
	Stereographic Projection
	Gnomonic Projection
	Azimuthal Equidistant Projection
	Aitoff Projection
	Lambert’s Equal Area Projection
	Hammer-Aitoff Projection
	Satellite Projection
	Example: Labeling and Drawing Projections

	Cylindrical Projections
	Mercator Projection
	Transverse Mercator Projection
	Example: The UTM Map
	Cylindrical Equidistant Projection
	Miller Cylindrical Projection
	Conic Projection
	Albers Equal-Area Conic Projection

	Pseudocylindrical Projections
	Robinson Cylindrical
	Sinusoidal Projection
	Mollweide Projection
	Goode’s Homolosine Projection

	Putting Data on Maps
	Example—Using CONTOUR with MAP_SET
	Limitations

	High-Resolution Continent Outlines
	Resolution of Map Databases

	References

	Image Display Routines
	Overview
	Graphics Used in Examples

	Images
	Imaging Routines
	Image Display
	IMAGE
	X, Y
	POSITION
	CHANNEL
	Image Orientation
	Image Position
	Image Size
	Examples
	Image Scaling

	Reading from the Display Device
	A Note on Reading Data from Windows
	X0
	Y0
	NX
	NY
	Channel
	Example

	Ability to Read from Display

	Color Tables
	Loading Color Tables
	V1, V2, and V3
	Start
	GET
	HLS
	HSV

	Example
	Color Table Procedures
	LOADCT
	XLOADCT
	XPALETTE
	MODIFYCT
	HSV
	HLS
	PSEUDO
	STRETCH
	Example

	Obtaining the Color Tables
	Color Tables—Switching Between Devices

	TrueColor Displays
	Configuration
	Lookup Tables
	Color Indices
	TrueColor Images
	Reading Images

	Controlling the Device Cursor
	ON_OFF
	X
	Y

	References

	Signal Processing
	Overview
	Running the Example Code

	Digital Signals
	Signal Analysis Transforms
	The Fourier Transform
	Interpreting FFT Results
	Displaying FFT Results
	Real and Imaginary Components
	Magnitude and Phase
	Power Spectrum

	Using Windows
	Hanning Window
	Hamming Window

	Aliasing
	FFT Algorithm Details
	The Hilbert Transform
	The Wavelet Transform
	Convolution
	Correlation and Covariance
	Digital Filtering
	Finite Impulse Response (FIR) Filters
	FIR Filter Implementation
	Infinite Impulse Response Filters
	IIR Filter Implementation

	Routines for Signal Processing
	References

	Mathematics
	IDL’s Numerical Recipes Functions
	Accuracy & Floating-Point Operations
	Roundoff Error
	Truncation Error
	Routines for Mathematical Error Assessment
	Below is a brief description of IDL routines for checking math error status and machine character...

	Arrays and Matrices
	Example
	Symmetric Arrays
	Multiplying Arrays
	The # Operator
	The ## Operator
	Multiplying Vectors
	Notes on the # and ## Operators

	Correlation Analysis
	Correlation Example
	Notes on Interpreting the Correlation Coefficient
	Multiple Linear Models
	Partial Correlation Example

	Routines for Computing Correlations
	Below is a brief description of IDL routines for computing correlations. More detailed informatio...

	Curve and Surface Fitting
	Routines for Curve and Surface Fitting

	Eigenvalues and Eigenvectors
	Symmetric Array with n Distinct Real Eigenvalues
	Example

	Nonsymmetric Array with n Distinct Real and Complex Eigenvalues
	Example

	Repeated Eigenvalues
	Example

	Example 4: The So-called Defective Case
	Routines for Computing Eigenvalues and Eigenvectors

	Gridding and Interpolation
	Routines for Gridding and Interpolation
	Below is a brief description of IDL routines for gridding and interpolation. More detailed inform...

	Hypothesis Testing
	One- and Two-sided Tests
	Parametric and Nonparametric Tests
	Routines for Hypothesis Testing
	Below is a brief description of IDL routines for hypothesis testing. More detailed information is...

	Integration
	A Bivariate Function
	Example

	A Trivariate Function
	Example

	Routines for Differentiation and Integration
	Below is a brief description of IDL routines for differentiation and integration. More detailed i...

	Linear Systems
	Overdetermined Systems
	Example

	Underdetermined Systems
	Example

	Complex Linear Systems
	Example

	Routines for Solving Simultaneous Linear Equations
	Below is a brief description of IDL routines for solving simultaneous linear equations. More deta...

	Nonlinear Equations
	Routines for Solving Nonlinear Equations
	Below is a brief description of IDL routines for solving systems of nonlinear equations. More det...

	Optimization
	Routines for Optimization
	Below is a brief description of IDL routines for optimization. More detailed information is avail...

	Sparse Arrays
	Diagonally-Dominant Array
	Example

	Routines for Handling Sparse Arrays

	Time-Series Analysis
	Routines for Time-Series Analysis

	Multivariate Analysis
	Cluster Analysis
	Example of Cluster Analysis

	Principal Components Analysis
	Example of Derived Variables from Principal Components

	Routines for Multivariate Analysis
	Below is a brief description of IDL routines for multivariate analysis. More detailed information...

	References
	Accuracy and Floating Point Operations
	Correlation Analysis
	Curve and Surface Fitting
	Eigenvalues and Eigenvectors
	Gridding and Interpolation
	Hypothesis Testing
	Integration
	Linear Systems
	Nonlinear Equations
	Optimization
	Sparse Arrays
	Time-Series Analysis
	Multivariate Analysis

	Part IV: Object Graphics
	Object Graphics
	Overview
	Direct versus Object Graphics
	IDL Direct Graphics
	IDL Object Graphics

	How to Use Object Graphics
	Overview of Object Graphics Classes
	Naming Conventions
	Common Methods

	Container Objects
	Structure Objects
	Model
	View
	Viewgroup
	Scene

	Atomic Graphic Objects
	Axis
	Contour
	Image
	Light
	Plot
	Polygon
	Polyline
	Surface
	Text
	Volume

	Composite Objects
	Colorbar
	Legend

	Attribute Objects
	Font
	Palette
	Pattern
	Symbol

	Helper Objects
	Tessellator
	TrackBall

	Destination Objects
	Buffer
	Clipboard
	Printer
	VRML
	Window

	File Format Objects
	MPEG

	Properties of Objects
	Setting Properties at Initialization
	Setting Properties of Existing Objects
	Retrieving Property Settings

	Undocumented Graphic Object Classes

	The Graphics Object Hierarchy
	Overview
	Scenes
	Viewgroups
	Views
	Models
	Atomic Graphic Objects
	Attribute and Helper Objects
	The Rendering Process
	Simple Plot Example

	Transformations
	Overview
	Viewport
	Location
	Coordinate Systems and Scaling

	Viewport
	Projection
	Parallel Projections
	Perspective Projections

	Eye Position
	View Volume
	Viewplane Rectangle
	Near and Far Clipping Planes
	Finding an Appropriate View Volume

	Model Transformations
	Translation
	Rotation
	Scaling
	Combining Transformations

	Coordinate Conversion
	A Function for Coordinate Conversion

	A Simple Example
	Virtual Trackball and 3D Transformations

	Working with Color
	Overview
	Color and Digital Data
	Indexed Color Model
	RGB Color Model
	Color and Destination Objects
	A Note about Draw Widgets

	Palettes
	Using Color
	Specifying RGB Values

	How IDL Interprets Color Values
	Indexed Color Model
	If a Color Index is Specified
	If an RGB Triple is Specified

	RGB Color Model
	If a Color Index is Specified
	If an RGB Triple is Specified

	Using Attributes and Helpers
	Overview
	Font Objects
	Determining Available Fonts
	Outline Fonts
	Hershey Fonts
	Creating Font Objects
	Using Font Objects
	Font Objects and Resource Use

	Palette Objects
	Creating Palette Objects
	Using Palette Objects

	Pattern Objects
	Creating Pattern Objects
	Using Pattern Objects

	Symbol Objects
	Creating Symbol Objects
	To Use a Pre-defined Symbol
	To Use a Graphic Object as a Symbol
	Setting Size
	Setting Color

	Using Symbol Objects

	Tessellator Objects
	Creating Tessellator Objects
	Using Tessellator Objects

	Working with Axes and Text
	Overview
	Axis Objects
	Creating Axis Objects
	Using Axis Objects
	Logarithmic Axes
	Date/Time Axes
	Julian Dates and Times
	Precision of Date/Time Data
	How to Generate Date/Time Data
	Displaying Date/Time Data on an Axis in Object Graphics
	Displaying Date/Time Data on a Plot Display
	Displaying Date/Time Data on a Contour Display

	Axis Titles and Tickmark Text
	Reverse Axis Plotting

	Text Objects
	Creating Text Objects
	Using Text Objects
	Location and Alignment
	3D Text and Text “On the Glass”
	Baseline
	Upward Direction
	Fonts

	A Text Example

	Working with Plots and Graphs
	Contour Objects
	Creating Contour Objects
	Using Contour Objects

	Polygon Objects
	Creating Polygon Objects
	Using Polygon Objects
	Style
	Vertex Colors
	Fill Patterns
	Shading
	Texture Mapping

	Polygon Mesh Optimization
	Quad Strips
	Triangle Fans
	Triangle Strips

	Normal Computations

	Polyline Objects
	Creating Polyline Objects
	Using Polyline Objects
	Symbols
	Shading and Vertex Coloring

	Plot Objects
	Creating Plot Objects
	Using Plot Objects
	Minimum and Maximum Values
	Using Plotting Symbols
	Averaging Points

	Polar Plots

	Legend Objects
	Creating Legend Objects
	Using Legend Objects
	Dimensions

	A Plotting Routine
	Improvements to the OBJ_PLOT Routine

	Working with Surfaces
	Surface Objects
	Creating Surface Objects
	Using Surface Objects
	Style
	Vertex Colors
	Shading
	Skirts
	Hidden Line Removal
	Texture Mapping

	Light Objects
	Creating Light Objects
	Using Light Objects

	An Interactive Surface Example

	Working with Images
	Image Objects
	Creating Image Objects
	Using Image Objects
	Alpha Blending
	Interleaving
	Palettes

	Colorbar Objects
	Creating Colorbar Objects
	Using Colorbar Objects
	Dimensions

	Saving an Image to a File
	Create an MPEG File

	Working with Volumes
	Volume Objects
	Creating Volume Objects
	Using Volume Objects

	Volume Object Attributes
	Opacity
	Color
	Lighting
	Compositing
	ZBuffering
	Interpolation
	Rendering speed

	Selecting Objects
	Selection and Data Picking
	Selection
	Selecting Views
	Selecting Graphic Atoms
	Selecting Models

	A Selection Example
	Data Picking
	A Data Picking Example

	Using Destination Objects
	Overview
	Window Objects
	Creating Window Objects
	Using the Init Method
	Creating a Draw Widget that Uses a Window Object

	Color Model
	Hardware vs. Software Rendering
	Note on Window Size Limits

	Using Window Objects
	Erasing a Window
	Exposing or Hiding a Window
	Iconifying a Window
	Setting the Window Cursor
	Saving/Restoring Windows

	Instancing
	Buffer Objects
	Creating Buffer Objects

	Clipboard Objects
	Creating Clipboard Objects

	Printer Objects
	Creating Printer Objects
	Color Model
	Printer Dialogs
	DIALOG_PRINTERSETUP
	DIALOG_PRINTJOB

	Drawing to a Printer
	Starting a New Page on a Printer
	Submitting a Printer Job

	VRML Objects
	Creating VRML Objects

	Subclassing from Object Graphics
	Creating Composite Classes or Subclasses

	Performance Tuning Object Graphics
	Overview
	Polygon Mesh Optimization
	Quad Strips
	Triangle Fans
	Triangle Strips

	Normal Computations
	Retained Graphics and Expose Events
	Improving Redraw Performance
	Back-face Culling
	Lighting

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

